精英家教网 > 初中数学 > 题目详情

如图,图①、图②中是某中学七年一班全体学生对三种蔬菜喜欢人数的频数分布直方图、扇形统计图.
依据图①、图②提供的信息解答下列各题:
(1)七年一班总人数为________;
(2)补全这两个统计图;
(3)根据以上统计的结果,请你为食堂的购菜计划提出一条合理化的建议.

解:(1)观察两个统计图知:喜欢菠菜的有12人,占20%,
所以总人数为12÷20%=60人;

(2)喜欢空心菜的有60-12-18=30人,占×100%=50%;
喜欢大白菜的有1-20%-50%=30%;
故统计图为:


(3)建议食堂购买菠菜、大白菜、空心菜时按2:3:5进货.
故答案为:60.
分析:(1)用喜欢菠菜的人数除以菠菜所占的百分比即可求得总人数;
(2)用总人数减去喜欢菠菜、大白菜的人数即可得到喜欢空心菜的人数;用喜欢某种蔬菜的人数除以总人数即可得到其所占的百分比;
(3)可建议食堂购买菠菜、大白菜、空心菜时按2:3:5进货.
点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.
(1)求图1中∠APN的度数是
 
;图2中,∠APN的度数是
 
,图3中∠APN的度数是
 

(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案)
 
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,是从边长为40cm、宽为30cm的矩形钢板的左上角截取一块长为20cm、宽为10cm的矩形后,剩下的一块下脚料.工人师傅要将它作适当地切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件.
(1)请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图2和图3中分别画出切割时所沿的虚线,以及拼接后所得到的正方形,保留拼接的痕迹);
(2)比较(1)中的两种方案,哪种更好一些?说说你的看法和理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•湖北)一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:
如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.
(2)探究与计算:
已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.
(3)归纳与拓展:
已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北潜江、仙桃、天门、江汉油田卷)数学(解析版) 题型:解答题

一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=2,BC=6,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:

如图2,矩形ABCD长为5,宽为2,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.

(2)探究与计算:

已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.

(3)归纳与拓展:

已知矩形ABCD两邻边的长分别为b,c(b<c),且它是4阶奇异矩形,求b:c(直接写出结果).

 

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题13 二次函数(解析版) 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,AC=12厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒是k厘米;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒(0<x<8),△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求k的值和y2与x的函数关系;
(3)在图2中,设y1与y2的图象的交点为M,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别与y1、y2的图象交于点E、F.求△OMF面积的最大值.
①说出线段EF的长在图1中所表示的实际意义;
②求△OMF面积的最大值.

查看答案和解析>>

同步练习册答案