精英家教网 > 初中数学 > 题目详情
4.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.一个多边形的一个外角为45°,则这个正多边形的边数是8.
B.运用科学计算器计算:3$\sqrt{17}$sin73°52′≈11.9.(结果精确到0.1)

分析 (1)根据多边形内角和为360°进行计算即可;(2)先分别求得3$\sqrt{17}$和sin73°52′的近似值,再相乘求得计算结果.

解答 解:(1)∵正多边形的外角和为360°
∴这个正多边形的边数为:360°÷45°=8
(2)3$\sqrt{17}$sin73°52′≈12.369×0.961≈11.9
故答案为:8,11.9

点评 本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要运用四舍五入法求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:
①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);
②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;
③游戏结束前双方均不知道对方“点数”;
④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.
现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.
(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为$\frac{1}{2}$;
(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).
(1)直接写出每天游客居住的房间数量y与x的函数关系式.
(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为$\sqrt{13}$或$\sqrt{10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为(  )
A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=-7D.x1=-1,x2=7

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=$\frac{2}{x}$上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是(  )
A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<0

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.函数y=$\frac{3}{x-2}$的定义域是x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:(x+2)(x-2)+x(4-x),其中x=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案