【题目】如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EC;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.
(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC+∠AEN= °.
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.
(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠AEN的度数.(提示,长方形的四个角都是90°)
【答案】(1)55,35,90;(2)不改变,理由见解析;(3)∠AEN=30°
【解析】
(1)由对折的定义∠BEC=∠B'EC=∠BEB'=55°,∠AEN=∠A'EN=∠AEA'=(180°﹣110°)=35°,得出∠BEC+∠AEN=90°即可;
(2)同(1)得出∠BEC=∠B'EC=∠BEB',∠AEN=∠A'EN=∠AEA',得出∠BEC+∠AEN=∠BEB'+(180°﹣∠BEB')=90°;
(3)由长方形的定义得出∠BCE+∠ECB′+∠B′CF=90°,由对折得出∠BCE=∠ECB′=∠B′CF=30°,求出∠FCE=60°,由平行线的性质得出∠BEC=∠FCE=60°,由(2)得出∠BEC+∠AEN=90°,即可得出答案.
解:(1)∵将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EC;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.
∴∠BEC=∠B'EC=∠BEB'=55°,∠AEN=∠A'EN=∠AEA'=(180°﹣110°)=35°,
∴∠BEC+∠AEN=90°,
故答案为:55,35,90;
(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值不改变,理由如下:
同(1)得:∠BEC=∠B'EC=∠BEB',∠AEN=∠A'EN=∠AEA',
∴∠BEC+∠AEN=∠BEB'+(180°﹣∠BEB')=90°;
(3)∵长方形纸片ABCD,
∴AB∥CD,∠BCD=90°,
∴∠BCE+∠ECB′+∠B′CF=90°,
∵将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,
∴∠BCE=∠ECB′=∠B′CF=30°,
∴∠FCE=60°,
∵AB∥CD,
∴∠BEC=∠FCE=60°,
由(2)得:∠BEC+∠AEN=90°,
∴∠AEN=90°﹣∠BEC=90°﹣60°=30°.
科目:初中数学 来源: 题型:
【题目】如图,在中, , 是的角平分线,以为圆心, 为半径作⊙.
()求证: 是⊙的切线.
()已知交⊙于点,延长交⊙于点, ,求的值.
()在()的条件下,设⊙的半径为,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一张长方形的纸对折(使宽边重合,然后再对折),第一次对折,得到一条折痕连同长方形的两条宽边共3条等宽线(如图(1),第二次对折(每次的折痕与上次的折痕保持平行),得到5条等宽线(如图(2)所示),连续对折三次后,可以得到9条等宽线(如图(3所示),对折四次可以得到17条等宽线,如果对折6次,那么可以得到的等宽线条数是______条.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
(1)求反比例函数的解析式.
(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,B,P,A,C是圆上的点,PB= PC, PD⊥CD,CD交⊙O于A,若AC=AD,PD =,sin∠PAD =,则△PAB的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠A=90°.
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,若∠B=45°,AB=1,⊙P切BC于点D,求劣弧的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
其中正确结论的为______(请将所有正确的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为( )
A.a﹣50B.a+50C.a﹣20D.a+20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(大丰某校数学兴趣小组活动场景)
(课堂再现)
师:同学们还记得教材P43分配律a(b+c)=ab+ac吗?现在,老师和大家一起来用几何的方法来证明这个公式。相信今天会惊喜不断。(学生期待惊喜中………),
(教者呈现教具)老师手上有两个长方形,长分别是b、c,宽都是a,(如图1)它们各自面积是多少?
生1:面积分别为ab、ac。
师:现在我们把它们拼在一起(如图2),组成了一个新长方形,新长方形面积又是多少呢?
生2:
师:所以……
生3:所以得到,也就是说(真好玩!)
师:相信大家能用类似方法来推导一个我们暂时还没学习的公式,老师期待大家给我的惊喜哦!(屏幕上呈现问题)
(拓展延伸)
将边长为a的正方形纸板上剪去一个边长为b的正方形(如图3),将剩余的纸板沿虚线剪开,拼成如图4的梯形。
(1)你能得到一个什么等式.(用含a、b的式子表示)
(再接再厉)
(2)直接运用上面你发现的公式完成运算:
(拓展提高)
(3)直接运用上面你发现的公式解下列方程:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com