精英家教网 > 初中数学 > 题目详情
12.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED.
(1)△BEC是否为等腰三角形?证明你的结论;
(2)若AB=2,∠DCE=22.5°,求BC长.

分析 (1)由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC即可;
(2)证出AE=AB=2,根据勾股定理求出BE,即可得出BC的长.

解答 解:(1)△BEC是等腰三角形;理由如下:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠BCE,
∵EC平分∠DEB,
∴∠DEC=∠BEC,
∴∠BEC=∠ECB,
∴BE=BC,即△BEC是等腰三角形.
(2)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∵∠DCE=22.5°,
∴∠DEB=2×(90°-22.5°)=135°,
∴∠AEB=180°-∠DEB=45°,
∴∠ABE=∠AEB=45°,
∴AE=AB=2,
由勾股定理得:BC=BE=$\sqrt{A{E}^{2}+A{B}^{2}}$=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,
答:BC的长是2$\sqrt{2}$.

点评 本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出∠BEC=∠ECB是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.-(2x-y)(2x+y)是下列哪个多项式因式分解的结果(  )
A.4x2-y2B.4x2+y2C.-4x2-y2D.-4x2+y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.用配方法解方程x2-2x-99=0时,原方程变形为(  )
A.(x+1)2=100B.(x-1)2=100C.(x+1)2=98D.(x-1)2=98

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知点(a-1,y1)、(a+1,y2)在反比例函数y=$\frac{k}{x}$(k>0)的图象上,若y1<y2,则a的范围是(  )
A.a>1B.a<-1C.-1<a<1D.-1<a<0或0<a<1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.自主学习,请阅读下列解题过程.
解一元二次不等式:x2-5x>0.
解:设x2-5x=0,解得:x1=0,x2=5,则抛物线y=x2-5x与x轴的交点坐标为(0,0)和(5,0).画出二次函数y=x2-5x的大致图象(如图所示),由图象可知:当x<0,或x>5时函数图象位于x轴上方,此时y>0,即x2-5x>0,所以,一元二次不等式x2-5x>0的解集为:x<0,或x>5.
通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:
(1)上述解题过程中,渗透了下列数学思想中的①和③.(只填序号)
①转化思想     ②分类讨论思想    ③数形结合思想
(2)一元二次不等式x2-5x<0的解集为0<x<5.
(3)用类似的方法解一元二次不等式:x2-2x-3>0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为6.73×104

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是(  )
A.168元B.300元C.60元D.400元

查看答案和解析>>

同步练习册答案