如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.
(1)求m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.
(1)m=-1,n=3;(2)y=-x2+x;(3)P1(,-),P2(,-),P3(,-).
解析试题分析:(1)解方程即可得出m,n的值.
(2)将A,B两点的坐标代入,进而利用待定系数法求出二次函数解析式即可;
(3)首先求出AB的直线解析式,以及BO解析式,再利用等腰三角形的性质得出当OC=OP时,当OP=PC时,点P在线段OC的中垂线上,当OC=PC时分别求出x的值即可.
试题解析:(1)解方程x2-2x-3=0,
得 x1=3,x2=-1.
∵m<n,
∴m=-1,n=3.
(2)∵m=-1,n=3,
∴A(-1,-1),B(3,-3).
∵抛物线过原点,设抛物线的解析式为y=ax2+bx(a≠0).
∴,解得:,
∴抛物线的解析式为y=-x2+x.
(3)设直线AB的解析式为y=kx+b.
∴,解得:,
∴直线AB的解析式为y=-x-.
∴C点坐标为(0,-).
∵直线OB过点O(0,0),B(3,-3),
∴直线OB的解析式为y=-x.
∵△OPC为等腰三角形,
∴OC=OP或OP=PC或OC=PC.
设P(x,-x),
(i)当OC=OP时,x2+(-x)2=.
解得x1=,x2=-(舍去).
∴P1(,-).
(ii)当OP=PC时,点P在线段OC的中垂线上,
∴P2(,-).
(iii)当OC=PC时,由x2+(-x+)2=,
解得x1=,x2=0(舍去).
∴P3(,-).
∴P点坐标为P1(,-),P2(,-),P3(,-).
考点: 二次函数综合题.
科目:初中数学 来源: 题型:解答题
某商店将进价为每件80元的某种商品按每件100元出售,每天可售出100件.经过市场调查,发现这种商品每件每降低1元,其销售量就可增加10件.
(1)设每件商品降低售价元,则降价后每件利润 元,每天可售出 件(用含的代数式表示);
(2)如果商店为了每天获得利润2160元,那么每件商品应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).
(1)求m的值及点A的坐标;
(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.
①当点E′落在该二次函数的图象上时,求AA′的长;
②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;
③当A′B+BE′取得最小值时,求点E′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一个交点是D.
(1)求抛物线与直线的解析式;
(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;
(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知:如图,直线与x轴相交于点A,与直线相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.
(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com