A. | n2 | B. | 22n-3 | C. | $\frac{{n}^{2}}{3}$ | D. | $\frac{{n}^{2}}{2}$ |
分析 根据直线解析式判断出直线与坐标轴相交构成的三角形是等腰直角三角形,再求出OA1,即第一个正方形的边长,同理依次求出第二个、第三个正方形的边长,然后根据规律写出第n个正方形的边长,如果根据阴影部分的面积等于相应正方形的面积的一半列式计算即可得解.
解答 解:∵直线y=x+1的k=1,
∴直线与x轴的夹角为45°,
∴直线与坐标轴相交构成的三角形是等腰直角三角形,
当x=0时,y=1,
所以,OA1=1,
即第一个正方形的边长为1,
所以,第二个正方形的边长为1+1=2,
第三个正方形的边长为2+2=4=22,
…,
第n个正方形的边长为2n-1,
∴S1=$\frac{1}{2}$×1×1=$\frac{1}{2}$,
S2=$\frac{1}{2}$×2×2=$\frac{{2}^{2}}{2}$,
S3=$\frac{1}{2}$×22×22=$\frac{{2}^{4}}{2}$,
…,
Sn=$\frac{1}{2}$×2n-1×2n-1=$\frac{{2}^{2n-2}}{2}$=22n-3.
故选B.
点评 本题考查了一次函数图象上点的坐标特征,正方形的性质,根据直线解析式判断出等腰直角三角形是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{\frac{9}{16}}$=±$\frac{3}{4}$ | B. | $\root{3}{-9}=-3$ | C. | $\sqrt{(-\frac{1}{3})^{2}}=\frac{1}{3}$ | D. | $\sqrt{-1\frac{7}{9}}=1\frac{1}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 3.5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (-2ab)•(-3ab)3=-54a4b3 | B. | (3.5×105)÷(5×106)=7 | ||
C. | (-0.1b)•(-10b2)3=-b7 | D. | (2×108)($\frac{1}{2}$×1016)=1024 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com