精英家教网 > 初中数学 > 题目详情
9.若存在3个互不相同的实数a,b,c,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t,则t=(  )
A.2B.1C.-1D.-2

分析 根据题意,分类讨论a的范围确定出t的值即可.

解答 解:存在3个互不相同的实数a,b,c,使得|1-a|+|1-3a|+|1-4a|=|1-b|+|1-3b|+|1-4b|=|1-c|+|1-3c|+|1-4c|=t,
当a≥1时,原式=a-1+3a-1+4a-1=8a-3;
当$\frac{1}{3}$≤a<1时,原式=1-a+3a-1+4a-1=6a-1;
当$\frac{1}{4}$≤a<$\frac{1}{3}$时,原式=1-a-3a+1+4a-1=1;
当a<$\frac{1}{4}$时,原式=1-a+1-3a+1-4a=3-8a,
则t=1,
故选B

点评 此题考查了整式的加减,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.下列二次根式中,最简二次根式是(  )
A.$\sqrt{\frac{1}{2}}$B.$\sqrt{0.2}$C.$\sqrt{2}$D.$\sqrt{20}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.为了考察一批电视机的使用寿命,从中任意抽取了10台进行实验,在这个问题中样本是(  )
A.抽取的10台电视机B.10
C.这一批电视机的使用寿命D.抽取的10台电视机的使用寿命

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列关系式正确的是(  )
A.35.5°=35°5′B.35.5°=35°50′C.35.5°>35°5′D.35.5°<35°5′

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为mcm的大正方形,两块是边长都为ncm的小正方形,五块是长宽分别是mcm、ncm的全等小矩形,且m>n.
(1)用含m、n的代数式表示切痕的总长为6m+6n cm;
(2)若每块小矩形的面积为48cm2,四个正方形的面积和为200cm2,试求该矩形大铁皮的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;若B,C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,AD=AE,BE=CD,∠1=∠2=120°,∠BAE=80°,那么∠CAE=20°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,OA=OB=OC=6,点G的线段OB上的一个动点,连接AG并延长BC于点D.
(1)当点G运动到何处时△ABD的面积为△ABC面积的$\frac{1}{3}$;
(2)在(1)的条件下,过点B作BE⊥AD,交AC于F,垂足为E,求点F的坐标;
(3)在(1)和(2)的条件下,在平面直角坐标系内是否存在点P,使△BFP为以边BF为直角边的等腰直角三角形?若存在,直接写出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=ax2+bx+4与x轴交于A,B两点,与y轴交于点C,点B的坐标为(-1,0),过x轴上一点E作EG⊥x轴交抛物线于点G,交直线AC于点F.
(1)直接写出点C的坐标(0,4);
(2)如图,当点A在x轴的正半轴上,且直线EG为抛物线的对称轴时,过C作CH⊥GE交GE于H点,若$\frac{FH}{FE}$=$\frac{3}{5}$,求抛物线的表达式;
(3)连接CG,当△CGF为等腰直角三角形时,求点E的坐标.

查看答案和解析>>

同步练习册答案