某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
课题 | 测量教学楼高度 | |
方案 | 一 | 二 |
图示 | ||
测得数据 | CD=6.9m,∠ACG=22°,∠BCG=13°, | EF=10m,∠AEB=32°,∠AFB=43° |
参考数据 | sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin13°≈0.22,cos13°≈0.97,tan13°≈0.23 | sin32°≈0.53,cos32°≈0.85,tan32°≈0.62 sin43°≈0.68,cos43°≈0.73,tan43°≈0.93 |
19(米)
解析试题分析:若选择方法一,在Rt△BGC中,根据即可得出CG的长,同理,在Rt△ACG中,根据可得出AG的长,根据AB=AG+BG即可得出结论。
若选择方法二,在Rt△AFB中由可得出FB的长,同理,在Rt△ABE中,由可求出EB的长,由EF=EB﹣FB且EF=10,可得,故可得出AB的长。
解:若选择方法一,解法如下:
在Rt△BGC中,∠BGC=90°,∠BCG=13°,BG=CD=6.9,∴。
在Rt△ACG中,∠AGC=90°,∠ACG=22°,∴AG=CGtan∠ACG =30×tan22°≈30×0.40=12。
∴AB=AG+BG=12+6.9≈19(米)。
答:教学楼的高度约19米。
若选择方法二,解法如下:
在Rt△AFB中,∠ABF=90°,∠AFB=43°,∴。
在Rt△ABE中,∠ABE=90°,∠AEB=32°,∴。
∵EF=EB﹣FB且EF=10,∴,解得AB=18.6≈19(米)。
答:教学楼的高度约19米。
科目:初中数学 来源: 题型:填空题
电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com