精英家教网 > 初中数学 > 题目详情
7、如图 AB∥CD∥EF,BC∥AD,AC平分∠BAD且与EF交于点O,那么与∠AOE(∠AOE除外)相等的角有(  )个.
分析:由AB∥CD∥EF,根据两直线平行,同位角相等,内错角相等,可得:∠AOE=∠OAB=∠ACD,又由AC平分∠BAD与BC∥AD,可得:∠DAC=∠ACB,又由对顶角相等,可得与∠AOE(∠AOE除外)相等的角有5个.
解答:解:∵AB∥CD∥EF,
∴∠AOE=∠OAB=∠ACD,
∵AC平分∠BAD,
∴∠DAC=∠BAC,
∵BC∥AD,
∴∠DAC=∠ACB,
∵∠AOE=∠FOC,
∴∠AOE=∠OAB=∠ACD=∠DAC=∠ACB=∠FOC.
∴与∠AOE(∠AOE除外)相等的角有5个.
故选C.
点评:此题考查了平行线的性质,对顶角相等以及角平分线的性质.题目难度不大,注意数形结合思想的应用,小心别漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图AB∥CD,∠ABE=120°,∠ECD=25°,则∠E=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图AB∥CD,∠BAP=35°,∠DCP=45°,则∠APE=
100
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成填空,如图AB∥CD,AE平分∠BAC,CE平分∠ACD.求证:AE⊥CE.
证明:∵AB∥CD
∴∠BAC+∠ACD=180°
两直线平行,同旁内角互补
两直线平行,同旁内角互补

∵AE平分∠BAC,CE平分∠ACB
已知
已知

∴∠1=
1
2
∠BAC,∠2=
1
2
∠ACD
∴∠1+∠2=
1
2
∠BAC+
1
2
∠ACD
=
1
2
(∠BAC+∠ACD)
=
1
2
×180°
=90°
∵∠1+∠2+∠E=180°
三角形内角和定理
三角形内角和定理

∴∠E=180°-(∠1+∠2)
=180°-90°
=90°
∴AE⊥CE
垂直的定义
垂直的定义

查看答案和解析>>

同步练习册答案