精英家教网 > 初中数学 > 题目详情
17.计算  
(1)-8-12+2                         
(2)-18+(-7.5)-(-31)-12.5
(3)-$\frac{1}{8}$-(+1$\frac{1}{3}$)-(-$\frac{5}{8}$)-(+4$\frac{2}{3}$)                
(4)1-[(-1)-($\frac{3}{7}$)-(+5)-($\frac{4}{7}$)]+|-4|.

分析 (1)原式利用加减法则计算即可得到结果;
(2)原式利用减法法则变形,计算即可得到结果;
(3)原式利用减法法则变形,计算即可得到结果;
(4)原式利用减法法则变形,计算即可得到结果.

解答 解:(1)原式=-20+2=-18;
(2)原式=-18-7.5+31-12.5=-38+31=-7;
(3)原式=-$\frac{1}{8}$+$\frac{5}{8}$-1$\frac{1}{3}$-4$\frac{2}{3}$=$\frac{1}{2}$-6=-5$\frac{1}{2}$;
(4)原式=1+1+$\frac{3}{7}$+5+$\frac{4}{7}$+4=12.

点评 此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知(x+y)2=40,xy=5,求(x-y)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知关于x的一元二次方程x2-(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程的一个根为1,则求方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,如图,D是△ABC的边AB上一点,DF交AC于点E,点E为线段 DF的中点,∠A=∠FCA.求证:△ADE≌△CFE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)(-23)+(-12)
(2)(-2)-(-5)+(-9)-(-7)
(3)(-5.5)+(-3.2)-(-2.5)-4.8        
(4)(-4$\frac{1}{4}$)-(+5$\frac{1}{3}$)-(-4$\frac{1}{4}$)
(5)$\frac{2}{5}$-|-1$\frac{1}{2}$|-(+2$\frac{1}{4}$)-(-2.75)
(6)(-0.5)-(-3$\frac{1}{4}}$)+3.75-(+8$\frac{1}{2}}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=$\frac{1}{2}$n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?
观察下面三个特殊的等式:
1×2=$\frac{1}{3}$(1×2×3-0×1×2)
2×3=$\frac{1}{3}$(2×3×4-1×2×3)
3×4=$\frac{1}{3}$(3×4×5-2×3×4)
将这三个等式的两边相加,可以得到1×2+2×3+3×4=$\frac{1}{3}$×3×4×5=20,读完这段材料,请你思考后回答:
(1)1×2+2×3+…+10×11=440;
(2)1×2+2×3+3×4+…+n×(n+1)=$\frac{1}{3}$n(n+1)(n+2);
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=$\frac{1}{4}$n(n+1)(n+2)(n+3).(只需写出结果,不必写中间的过程)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,∠ACB=70°,CD是OA的垂直平分线,则∠ACD的度数为55°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程
(1)(3x-4)2-x2=0
(2)2x2-7x+2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,C是BE上一点,D是AC的中点,且AB=AC,DE=DB,∠A=60°,△ABC的周长是18cm.求∠E的度数及CE的长度.

查看答案和解析>>

同步练习册答案