精英家教网 > 初中数学 > 题目详情

【题目】某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:

购买数量低于5000

购买数量不低于5000

红色地砖

原价销售

以八折销售

蓝色地砖

原价销售

以九折销售

如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.

(1)红色地砖与蓝色地砖的单价各多少元?

(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.

【答案】(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.

【解析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案;

(2)利用已知得出x的取值范围,再利用一次函数增减性得出答案.

1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:

解得:

答:红色地砖每块8元,蓝色地砖每块10元;

(2)设购置蓝色地砖x块,则购置红色地砖(12000-x)块,所需的总费用为y元,

由题意可得:x≥(12000-x),

解得:x≥4000,

x≤6000,

所以蓝砖块数x的取值范围:4000≤x≤6000,

4000≤x<5000时,

y=10x+8×0.8(12000-x)

=76800+3.6x,

所以x=4000时,y有最小值91200,

5000≤x≤6000时,y=0.9×10x+8×0.8(12000-x)=2.6x+76800,

所以x=5000时,y有最小值89800,

89800<91200,

∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

如图(1)∠DAB=90°,求证:a2+b2=c2

证明:连接DB,过点DDFBCBC的延长线于点F,则DF=b-a

S四边形ADCB=

S四边形ADCB=

化简得:a2+b2=c2

请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,A-2,0,B0,4, B 点为直角顶点在第二象限作等腰直角△ABC

1)求 C 点的坐标;

2)在坐标平面内是否存在一点 P,使△PAB △ABC 全等?若存在,直接写出 P 点坐标,若不存在,请说明理由;

3)如图 2, E y 轴正半轴上一动点, E 为直角顶点作等腰直角△AEM, M MNx 轴于 N, OE-MN 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.

例如:因为,所以(2,8)=3.

(1)根据上述规定,填空:

(5,125)= ,(-2,4)= ,(-2,-8)=

(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:

,则,即

,即

请你尝试运用上述这种方法说明下面这个等式成立的理由.

(4,5)+(4,6)=(4,30)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠1=2,∠3=4

1)求证:ADBE

2)若∠B=3=22,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数yx+3的图象分别与x轴、y轴相交于点AB,且与经过点C20)的一次函数ykx+b的图象相交于点D,点D的横坐标为4,直线CDy轴相交于点E

1)直线CD的函数表达式为   ;(直接写出结果)

2)点Q为线段DE上的一个动点,连接BQ

①若直线BQ将△BDE的面积分为12两部分,试求点Q的坐标;

②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,求点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD中,AD=3cm,CD=1cm,B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QPBA的延长线于点M,过MMNBC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题:

(1)是否存在时刻t,使点P在∠BCD的平分线上;

(2)设四边形ANPM的面积为S(cm),求St之间的函数关系式;

(3)是否存在某一时刻t,使四边形ANPMABCD面积相等,若存在,求出相应的t值,若不存在,说明理由;

(4)求t为何值时,ABN为等腰三角形

备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,△ABC中,∠BAC=60°,内角∠ABC、∠ACB的平分线相交于点O,则∠BOC=______;

2)如图2,△ABC中,∠BAC=60°,AD是△ABC的边BC上的高,且∠B=∠1,求∠C的度数.

查看答案和解析>>

同步练习册答案