精英家教网 > 初中数学 > 题目详情
  在长为10,宽为8的矩形ABCD中,点E在长AD上,F在AB上,若所得到的矩形EFCD∽矩形ABCD,试问AE之长是多少?请说明理由。

 

答案:
解析:

答案: AE=3.6。理由:由,得DE=6.4,则AE=10-6.4=3.6

 


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

2、一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分(如图),与剩余木板的面积y(m2)与x(m)的关系式为(0≤x<5)(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图转动一长为4cm,宽为3cm的长方形木板,在桌面上作无滑动的翻滚(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上另一小木块挡住,且使木板与桌面成30°角,则A翻滚到A2时,共经过的路径长为(  )cm.精英家教网
A、3.5πB、4.5πC、5πD、10π

查看答案和解析>>

科目:初中数学 来源: 题型:

王老师组织学生举行了一次手抄报活动,最后把十名优秀者的手抄报粘合在一起,在教室里展出.如图,已知每张报纸长为38cm,宽为28cm,粘合部分的纸为2cm宽,则这10张报纸粘合后的长度为(  )

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x)

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+5,x2=25-5.根据x≥25,舍去x2=25-5

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+5米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

同步练习册答案