精英家教网 > 初中数学 > 题目详情

【题目】某商场进行有奖促销活动,规定顾客购物达到一定金额就可以获得一次转动转盘的机会(如图),当转盘停止转动时指针落在哪一区域就可获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).

转动转盘的次数n

100

150

200

500

800

1000

落在“10元兑换券的次数m

68

111

136

345

564

701

落在“10元兑换券的频率

0.68

a

0.68

0.69

b

0.701

(1)a的值为   ,b的值为   

(2)假如你去转动该转盘一次,获得“10元兑换券的概率约是   ;(结果精确到0.01)

(3)根据(2)的结果,在该转盘中表示“20元兑换券区域的扇形的圆心角大约是多少度?(结果精确到1°)

【答案】(1)0.74、0.705;(2)0.70;(3)108°.

【解析】

(1)根据频率,计算即可;(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,可估计概率;(3)在该转盘中表示“20元兑换券区域的扇形的圆心角大约是360°×0.3.

解:(1)a=111÷150=0.74、b=564÷800=0.705,

故答案为:0.74、0.705;

(2)由表可知,随着转动次数越大,频率逐渐稳定在0.70附近,

所以获得“10元兑换券的概率约是0.70,

故答案为:0.70;

(3)在该转盘中表示“20元兑换券区域的扇形的圆心角大约是360°×0.3=108°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,分别以AB、BC为一边向外作正方形ABFG、BCED,连接AD、CF,ADCF交于点M,ABCF交于点H.

(1)求证:△ABD≌△FBC;

(2)已知AD=6,求四边形AFDC的面积;

(3)在△ABC中,设BC=a,AC=b,AB=c,当∠ACB≠90°时,c≠a+b.在任意△ABC中,c=a+b+k.a=3,b=2的情形,探究k的取值范围(只需写出你得到的结论即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,若OBC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中正确的是(  ).

A. “打开电视机,正在播放《动物世界》”是必然事件

B. 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖

C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为

D. 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是(  )

A. 袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球

B. 掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数

C. 先后两次掷一枚质地均匀的硬币,两次都出现反面

D. 先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:

最喜欢娱乐类节目的有______人,图中______;

请补全条形统计图;

根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;

在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.

(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将摸出黑球记为事件A,请完成下列表格;

(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,正方形ABCD中,P是边BC上一点,BEAP,DFAP,垂足分别是点E、F.

(1)求证:EF=AE﹣BE;

(2)联结BF,如课=.求证:EF=EP.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的周长是12DAC边上的中点,点EBC边的延长线上,如果DE=DB,那么CE的长是_______.

查看答案和解析>>

同步练习册答案