分析 (1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,即可得出结论;
(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.
解答 (1)证明:连接BD,如图所示:
∵梯形ABCD中,AD∥BC,AB=CD,
∴AC=BD,
∵DE⊥BC,EF=DE,
∴BD=BF,CD=CF,
∴AC=BF,AB=CF,
∴四边形ABFC是平行四边形;
(2)证明:∵DE2=BE•CE,
∴$\frac{DE}{CE}=\frac{BE}{DE}$,
∵∠DEB=∠DEC=90°,
∴△BDE∽△DCE,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四边形ABFC是矩形.
点评 本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但题目的难度不算大.
科目:初中数学 来源: 题型:选择题
A. | 2cm | B. | 11cm | C. | 22cm | D. | 24cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com