精英家教网 > 初中数学 > 题目详情
12.探究:如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和点D,直线l3有一点P
(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生,并说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?并说明理由.

分析 (1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.

解答 解:(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.
理由如下:
过点P作PE∥l1
∵l1∥l2
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)如图2,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
如图3,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.

点评 本题主要考查平行线的性质与三角形外角的性质.此题难度适中,解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.二次函数的图象经过点(4,-3),且当x=3时,有最大值-1,则该二次函数解析式为y=-2(x-3)2-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示,在一张某地区的地图上,原来标有学校,公园和广场三个位置,由于被墨水污染,广场的具体位置已看不清了,根据记忆,广场的位置在学校的北偏东60°的方向,在公园的北偏西45°的方向,根据上述信息,请找出广场的具体位置.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.当x取什么值时,下列分式无意义?
(1)$\frac{x}{2x-3}$;
(2)$\frac{x-1}{5x-10}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)$\frac{2x}{x-2}+\frac{4}{2-x}$
(2)($\frac{1}{a-b}$-$\frac{b}{{a}^{2}-{b}^{2}}$)÷$\frac{a}{a+b}$
(3)先化简,再求值:$\frac{x}{x+2}$÷$\frac{{{x^2}-x}}{{{x^2}+4x+4}}$-$\frac{x}{x-1}$,其中x=1+$\sqrt{3}$.
(4)先化简,再求值:$\frac{{m}^{2}-2m+1}{{m}^{2}-1}$$÷(m-1-\frac{m-1}{m+1})$,其m=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图是某校调查初一年级3个班的一次数学成绩的条形图.
(1)3个班及格的人数共有几人?
(2)3个班的平均及格率是多杀?
(3)画出这次数学成绩及格、不及格情况的扇形图.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.计算:$\frac{5(2x-3)}{11(6{x}^{2}+x-1)}$+$\frac{7x}{6{x}^{2}+7x-3}$-$\frac{12(3x+1)}{11(4{x}^{2}+8x+3)}$=$\frac{1}{2x+1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(m)2与工作时间t(h)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为(  )
A.100m2B.50m2C.80m2D.40m2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AC∥DF,AC=DF,BF=EC,问线段AB与DE有怎样的关系?请说明理由.

查看答案和解析>>

同步练习册答案