精英家教网 > 初中数学 > 题目详情
已知直线l1∥l2,且 l3、l4和l1、l2分别交于A、B、C、D四点,点P在直线AB上运动.设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)如果点P在A、B两点之间时(如图),探究∠1、∠2、∠3之间的数量关系.(要求说明理由);
(2)此时,若∠1=30°,∠3=40°,求∠2的度数;
(3)如果点P在A、B两点外侧时,猜想∠1、∠2、∠3之间的数量关系(点P和A、B不重合)(直接写出结论).
分析:(1)∠1、∠2、∠3之间的数量关系为∠2=∠1+∠3,理由为:过P作PM平行于l1,由l1∥l2,利用平行于同一条直线的两直线平行,得到PM平行于l2,由PM平行于l1,利用两直线平行内错角相等得到∠1=∠DPM,由PM平行于l2,利用两直线平行内错角相等得到∠3=∠CPM,而∠2=∠DPM+∠CPM,等量代换可得证;
(2)将∠1和∠3的度数代入第一问的结论∠2=∠1+∠3中,即可求出∠2的度数;
(3)∠1、∠2、∠3之间的数量关系为∠3=∠1+∠2,理由为:由l1∥l2,利用两直线平行同位角相等得到∠3=∠4,又∠4为三角形PDQ的外角,利用三角形的外角性质得到∠4=∠1+∠2,等量代换可得证.
解答:解:(1)∠2=∠1+∠3,理由为:
证明:过P作PM∥l1,如图所示:

由l1∥l2,得到PM∥l2
∴∠1=∠DPM,∠3=∠CPM,
∴∠2=∠DPM+∠CPM=∠1+∠3;
(2)∵∠1=30°,∠3=40°,
∴∠2=∠1+∠3=70°;
(3)∠3=∠1+∠2,理由为:

证明:∵l1∥l2
∴∠3=∠4,
又∠4为△PDQ的外角,
∴∠4=∠1+∠2,
则∠3=∠1+∠2.
点评:此题考查了平行线的判定与性质,利用了等量代换的思想,熟练掌握平行线的判定与性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、已知直线l1∥l2∥l3,l1与l2相距6cm,又l3距l1为4cm,则l3距l2
2或10
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在四条直线上,正方形ABCD的面积为S.
(1)如图1,已知平行线间的距离均为m,求S.(用含有m的式子表示)
(2)如图2,改变平行线之间的距离,但仍使四边形ABCD为正方形,
①求证:h1=h3
②求证:s=(h1+h2)2+h12
③若
32
h1+h2=1
,求S关于h1的函数关系式,并指出S随h1变化的规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2∥l3,直线AC和DF分别与l1、l2、l3相交于点A、B、C和D、E、F.如果AB=1,EF=3,那么下列各式中,正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l1∥l2,直线l3,l4分别与l1,l2交于点B,F和A,E,点P是直线l3上一动点(不与点B,F重合),设∠BAP=∠1,∠PEF=∠2,∠APE=∠3.
(1)如上图,当点P在B,F两点之间运动时,试确定∠1,∠2,∠3之间的关系,并给出证明;
(2)当点P在B,F两点外侧运动时,试探究∠1,∠2,∠3之间的关系,画出图形,给出结论,不必证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线l3上有点P(点P与点C、D不重合),点A在直线l1上,点B在直线l2上.
(1)如果点P在C、D之间运动时,试说明∠PAC+∠PBD=∠APB;
(2)如果点P在直线l1的上方运动时,试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(3)如果点P在直线l2的下方运动时,∠PAC,∠APB,∠PBD之间的关系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接写出结论)

查看答案和解析>>

同步练习册答案