已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r.
(1)如图,当点E在直径AB上时,试证明:OE·OP=r2
(2)当点E在AB(或BA)的延长线上时,以如图点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
解:(1)证明:连接FO并延长交⊙O于Q,连接DQ. ∵FQ是⊙O直径,∴∠FDQ=90°.∴∠QFD+∠Q=90°. ∵CD⊥AB,∴∠P+∠C=90°. ∵∠Q=∠C,∴∠QFD=∠P. ∵∠FOE=∠POF,∴△FOE∽△POF. ∴.∴OE·OP=OF2=r2. (2)解:(1)中的结论成立. 理由:如图,依题意画出图形,连接FO并延长交⊙O于M,连接CM. ∵FM是⊙O直径,∴∠FCM=90°,∴∠M+∠CFM=90°. ∵CD⊥AB,∴∠E+∠D=90°. ∵∠M=∠D,∴∠CFM=∠E. ∵∠POF=∠FOE,∴△POF∽△FOE. ∴,∴OE·OP=OF2=r2. 思路分析:(1)要证等积式,需要将其化为比例式,再利用相似证明.观察图形,此题显然要连半径OF,构造OE、OP所在的三角形,这样问题便转化为证明△FOE∽△POF了.而要证明△FOE∽△POF,由于已经存在一个公共角,因此只需再证明另一角对应相等即可,这一点利用圆周角定理及其推论可获证,且方法不惟一;(2)同(1)类似. 方法规律:此题综合考查圆的性质及相似的知识,解题关键是辅助线的灵活添加.值得注意的是(2)问是(1)知识的变式,能开拓视野,提高思维深度、灵敏性,其证明同(1)类似,可不必证明. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
3 |
2 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
2 |
16 |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com