精英家教网 > 初中数学 > 题目详情

网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.

证明:∵

∴△ABC∽△DEF。

解析试题分析:利用图形与勾股定理可以推知图中两个三角形的三条对应边成比例,由此可以证得△ABC∽△DEF。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在一个边长为a(单位:cm)的正方形ABCD中.

(1)如图1,如果N是AD中点,F为AB中点,连接DF,CN.
①求证:DF=CN;
②连接AC.求DH:HE: EF的值;
(2)如图2,如果点E、M分别是线段AC、CD上的动点,假设点E从点A出发,以cm/s速度沿AC向点C运动,同时点M从点C出发,以1cm/s的速度沿CD向点D运动,运动时间为t(t>0),连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由. (4分)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.

(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.

(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△是等边三角形,点分别在边上,

(1)求证:△∽△;(2)如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).

(1)当t=    s时,四边形EBFB'为正方形;
(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.

(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2
(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;
(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?
答:   (填“成立”或“不成立”)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为     
②当AC=3,BC=4时,AD的长为     
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图中几何体的俯视图是(  )

查看答案和解析>>

同步练习册答案