精英家教网 > 初中数学 > 题目详情
7.一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,求函数的解析式.(画图作答)

分析 设一次函数解析式为y=kx+b,根据两直线平行的问题得到k=2,然后把A点坐标代入y=2x+b求出b即可得到一次函数解析式.

解答 解:设一次函数解析式为y=kx+b,
∵直线y=kx+b与y=2x-3平行,
∴k=2,
把A(-2,-1)代入y=2x+b得-4+b=-1,解得b=3,
∴一次函数解析式为y=2x+3.

点评 本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.现有A、B两个大小一样、质地均匀的小正方体(正方体的每个面上分别标有数字1,2,3,4,5,6),用娜娜抛掷A正方体朝上的数字为x,用莉莉抛掷B正方体朝上的数字为y,且点M的坐标为(x,y),则她们各投掷一次后,点M在一次函数y=-x+4的图象上的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.甲、乙、丙、丁四个同学围成一圈做游戏,甲、乙两个相邻的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在2015年寒假社会实践活动中,小明和小红对某偏远村庄的空巢老人进行了一次“爱心送温暖活动”.它们对该村空巢老人每周的生活费用进行了统计,并分别绘制了一幅没有完成的统计图,如图(1)和图(2)所示(图中的各部分都只含最低值不含最高值).小明说:“生活费在80元以上,少于100元(含80元,不含100元)的有17位”;小红说:“没有低于30元的”.

请根据以上信息回答下列问题:
(1)该村共有多少为空巢老人;
(2)补全两个统计图中三个空缺的部分;
(3)每周的生活费用在85~90元之间(含85元,不含90元)的空巢老人有多少位?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:$\frac{a-3}{2a-4}$÷($\frac{5}{a-2}$-a-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,点A,B,C在⊙O上,AB是⊙O的直径,AC=4,BC=3.
(1)求⊙O的半径;
(2)若点D在直径AB上,且AD=1.4,连接DC,过点B作BE∥CD交⊙O于点E,延长AB至F,使BF=$\frac{45}{7}$,请判断直线EF与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解不等式组:
(1)$\left\{\begin{array}{l}{2x+3>5}\\{3x-2≤4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+5≤3(x+2)}\\{x-1<\frac{2}{3}x}\end{array}\right.$
(3)$\left\{\begin{array}{l}{-2x+1>-11}\\{\frac{3x+1}{2}-1≥x}\end{array}\right.$
(4)$\left\{\begin{array}{l}{x-3(x-2)≥4}\\{\frac{2x-1}{5}>\frac{x+1}{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在菱形ABCD中,∠ABC中,∠ABC=60°,点E、F分别从点B、D同时出发,以同样的速度沿边BC、DC向点C运动(点E、F不与点B、D重合).给出以下四个结论:①AE=AF;②EF∥BD;③当点E、F分别为边BC、DC的中点时,EF=$\sqrt{3}$BE;④当点E、F分别为边BC、DC的中点时,△AEF的面积最大.上述结论中正确的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案