精英家教网 > 初中数学 > 题目详情
1.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:A(2,-1)、B(4,3);
(2)求△ABC的面积;
(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.

分析 (1)根据直角坐标系的特点写出对应点的坐标;
(2)用△ABC所在的矩形面积减去三个小三角形的面积即可求解;
(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.

解答 解:(1)A(2,-1),B(4,3);

(2)S△ABC=3×4-$\frac{1}{2}$×2×4-$\frac{1}{2}$×1×3-$\frac{1}{2}$×3×1=5,
故△ABC的面积为5;

(3)所作图形如图所示:
A′(0,0)、B′(2,4)、C′(-1,3).
故答案为:2,-1,4,3.

点评 本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.若关于x的方程$\frac{2}{x(x-1)}$+$\frac{a}{1-x}$=0有增根,则a的取值范围为-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.利用所示图来证明勾股定理.
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-7,1),点B的坐标为(-3,1),点C的坐标为(-3,3).
(1)若P(m,n)为Rt△ABC内一点,平移Rt△ABC得到Rt△A1B1C1,使点P(m,n)移到点P1(m+6,n)处,试在图上画出Rt△A1B1C1,并直接写出点A1的坐标为(-1,1);
(2)将原来的Rt△ABC绕点B顺时针旋转90°得到Rt△A2B2C2,试在图上画出Rt△A2B2C2,并直接写出点A到A2运动路线的长度为2π;
(3)将Rt△A1B1C1绕点Q旋转90°可以和Rt△A2B2C2完全重合,请直接写出点Q的坐标为(0,4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)C(8,0)D(8,8)抛物线y=ax2+bx过A,C两点,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E
(1)直接写出点A的坐标,并求出抛物线的解析式.
(2)过点E作EF⊥AD于点F,交抛物线于点G,当t为何值时,线段EG最长?
(3)连接EQ,在点P,Q运动的过程中,是否存在某个时刻,使得以C,E,Q为顶点的△CEQ为等腰三角形?如果存在,请直接写出相应的t值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知x满足不等式3x+5≤0,求等式$\frac{4}{15}\sqrt{\frac{3y}{2x}}÷$M=$\frac{1}{2}\sqrt{\frac{xy}{2}}$中的代数式M.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为(  )
A.(-2013,2)B.(-2013,-2)C.(-2014,-2)D.(-2014,2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,点C是线段AB上一点,点M是AC的中点,点N是BC的中点,如果MC比NC长2cm,AC比BC长(  )
A.2cmB.4cmC.1cmD.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个长方形.
(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2
(2)请写出上述过程所揭示的乘法公式;
(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.

查看答案和解析>>

同步练习册答案