精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD的顶点A和对称中心在反比例函数yk≠0x0)的图象上,若矩形ABCD的面积为16,则k的值为_____

【答案】8

【解析】

A点的坐标为(mn)则根据矩形的性质得出矩形中心的纵坐标为,根据中心在反比例函数y上,求出中心的横坐标为,进而可得出BC的长度,根据矩形ABCD的面积即可求得.

解:如图,延长DAy轴于点E

∵四边形ABCD是矩形,

A点的坐标为(mn)则根据矩形的性质得出矩形中心的纵坐标为

∵矩形ABCD的中心都在反比例函数y上,

x

∴矩形ABCD中心的坐标为(

BC2m)=2m

S矩形ABCD16

∴(2mn16

4k2mn16

∵点Amn)在y上,

mnk

4k2k16

解得:k8

故答案为8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一元二次方程mx2-2mx+m-2=0.

(1)若方程有两个不等实数根,求m的取值范围;

(2)若方程的两实数根为x1,x2,且|x1-x2|=1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BEDE,其中DE交直线AP于点F

1)依题意补全图1

2)若∠PAB20°,求∠ADF的度数;

3)如图2,若45°<∠PAB90°,用等式表示线段ABFEFD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6. 现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600.

1)求最多能购进多媒体设备多少套?

2)恰逢双十一活动,每套多媒体设备的售价下降,每个电脑显示屏的售价下降元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加,实际投入资金与计划投入资金相同,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.

(1)求证:∠C=90°;

(2)当BC=3,sinA=时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经过点A41)的直线与反比例函数y的图象交于点ACABy轴,垂足为B,连接BC

1)求反比例函数的表达式;

2)若ABC的面积为6,求直线AC的函数表达式;

3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC90°,则点P的坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将每件进价为80元的A商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x元,商场一天可通过A商品获利润y元.

(1)求y与x之间的函数解析式(不必写出自变量x的取值范围)

(2)A商品销售单价为多少时,该商场每天通过A商品所获的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形OABC的长是12m,宽是4m,按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+2x+c表示.

1)请写出该抛物线的函数关系式;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案