精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知AB=CD,BC=DA,E、F是AC上的两点,且AF=CE.
试证明:BF=DE.
分析:先利用SSS判定△ABC≌△CDA,从而得到∠CAB=∠ACD,再利用SAS判定△ABF≌△CDE,从而得到BF=DE.
解答:证明:在△ABC和△CDA中
BC=DA
AB=DC
AC=CA

∴△ABC≌△CDA(SSS).
∴∠CAB=∠ACD.
∵AB=CD,AF=CE,
∴△ABF≌△CDE(SAS).
∴BF=DE.
点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS、SAS、SSS等,先证明△ABC与△CDA全等是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,已知AB∥CD,∠A=38°,则∠1=
142°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,∠1=50°25′,则∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知 AB∥CD,∠A=53°,则∠1的度数是
127°
127°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD∥EF,那么下列结论中,正确的是(  )

查看答案和解析>>

同步练习册答案