精英家教网 > 初中数学 > 题目详情
已知在直角坐标系xOy中,二次函数y=-x2+bx+c的图象经过点A(-2,3)和点B(0,-5).
(1)求这个二次函数的解析式;
(2)将这个函数的图象向右平移,使它再次经过点B,并记此时函数图象的顶点为M.如果点P在x轴的正半轴上,且∠MPO=∠MBO,求∠BPM的正弦值.
【答案】分析:(1)抛物线的解析式中有两个待定系数,直接将已知的两点坐标代入其中,即可求出待定系数的值,由此得解.
(2)可先求出点A或B关于抛物线对称轴的对称点,据此找出抛物线平移的距离,由此先得出点M的坐标;若∠MBO=∠MPO,那么它们加上一对对顶角后可发现,∠BMP=∠BOP=90°,即△MPB是直角三角形,首先利用勾股定理确定点P的坐标,则BM、PM的长可知,进而可得到∠BPM的正弦值.
解答:解:(1)由题意,得
解得
∴所求二次函数的解析式为y=-x2-6x-5.

(2)二次函数y=-x2-6x-5图象的顶点坐标为(-3,4),且经过点(-6,-5);
∴图象向右平移6个单位,平移后的顶点M的坐标为(3,4).
由题意∠MPO=∠MBO,由右图知:∠MNP=∠BNO,可得:
∠MPO+∠MNP=∠MBO+∠BNO,即:∠PMB=∠POB=90°.
已知B(0,-5)、M(3,4),设点P的坐标为(x,0),则:
BM2=(0-3)2+(-5-4)2=90、MP2=(x-3)2+16、BP2=x2+25;
∴(x-3)2+16+90=x2+25,解得 x=15;
∴点P的坐标为(15,0).
∴BM=3,PB=5
∴sin∠BPM=
点评:此题主要考查的是函数解析式的确定以及解直角三角形的相关知识;题目的难度不大,最后一题中,准确判断出∠PMB的度数是解答题目的关键所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,
3
),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度精英家教网.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•上海模拟)已知在直角坐标系xOy中,二次函数y=-x2+bx+c的图象经过点A(-2,3)和点B(0,-5).
(1)求这个二次函数的解析式;
(2)将这个函数的图象向右平移,使它再次经过点B,并记此时函数图象的顶点为M.如果点P在x轴的正半轴上,且∠MPO=∠MBO,求∠BPM的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知在直角坐标系xOy中,二次函数y=-x2+bx+c的图象经过点A(-2,3)和点B(0,-5).
(1)求这个二次函数的解析式;
(2)将这个函数的图象向右平移,使它再次经过点B,并记此时函数图象的顶点为M.如果点P在x轴的正半轴上,且∠MPO=∠MBO,求∠BPM的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知在直角坐标系xOy中,正方形ABCD的顶点A(-1,1),顶点C(1,3).那么,顶点B、D的坐标分别为________、________.

查看答案和解析>>

同步练习册答案