【题目】如图,已知抛物线y=x2+bx+c与x轴交于A、B两点,交y轴于点C,AB=4,对称轴是直线x=﹣1.
(1)求抛物线的解析式及点C的坐标;
(2)连接AC,E是线段OC上一点,点E关于直线x=﹣1的对称点F正好落在AC上,求点F的坐标;
(3)动点M从点O出发,以每秒2个单位长度的速度向点A运动,到达点A即停止运动,过点M作x轴的垂线交抛物线于点N,交线段AC于点Q.设运动时间为t(t>0)秒.
①连接BC,若△BOC与△AMN相似,请直接写出t的值;
②△AOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.
【答案】(1)C(0,-3);(2)F(-2,-1);(3)①t=1;②t=或.
【解析】
(1)点、关于直线对称,,由对称性质知,,即可求解;
(2)设点,则点,将点的坐标代入直线的表达式,即可求解;
(3)①当与相似,,即或,即可求解;②分、、三种情况,分别求解即可.
解:(1)点、关于直线对称,,
由对称性质知,,
将点、的坐标代入中,得:,
令,则,故点;
(2)设直线的表达式为:,则,解得:,
故直线的表达式为:;
设点,则点,
将点的坐标代入直线的表达式的:,
故点;
(3)①秒时,点的坐标为,则点,
点,,即,
则,,
与相似,
,即或,
解得:或1或(舍去和,
故;
②点,点,
则,,,
当时,即,解得:(舍去;
当时,同理可得:;
当时,同理可得:或(舍去);
综上,或.
科目:初中数学 来源: 题型:
【题目】如图,AC为⊙O的直径,B为AC延长线上一点,且∠BAD=∠ABD=30°,BC=1,AD为⊙O的弦,连结BD,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.
(1)求证:直线BD是⊙O的切线;
(2)求⊙O的半径OD的长;
(3)求线段BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在中,点分别在上,且.设的边上的高为,的边上的高为.
(1)若、的面积分别为3,1,则 ;
(2)设、、四边形的面积分别为,求证:;
(3)如图②,在中,点分别在上,点在上,且, . 若、、的面积分别为3, 7, 5,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在半圆上,点D在圆外,DE⊥AB于点E交AC于点F,且DF=CD
(1)求证:CD是⊙O的切线;
(2)若点F是AC的中点,DF=2EF=2,求⊙O半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE、CP.已知∠A=60o .
(1)试探究,当△CPE≌△CPB时,CD与DE的数量关系;
(2)若BC=4,AB=3,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】双曲线(k为常数,且)与直线交于两点.
(1)求k与b的值;
(2)如图,直线AB交x轴于点C,交y轴于点D,若点E为CD的中点,求△BOE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为.
①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.
③过点A作于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,点O在△ABC的BC边上,⊙O经过点A、C,且与BC相交于点 D.点E是下半圆弧的中点,连接AE交BC于点F,已知AB=BF.
(1)求证:AB是⊙O的切线;
(2)若OC=3,OF=1,求cosB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,点E是BC的中点,过点B作BG⊥AE于点G,过点C作CF垂直BG的延长线于点H,交AD于点F
(1)求证:△ABG≌△BCH;
(2)如图2,连接AH,连接EH并延长交CD于点I;
求证:① AB2=AE·BH;② 求的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com