分析 连接AD、BF,设AC=a,BC=b,首先证明AD+BF=2OP,得a+b=12,再根据a2+b2=100求出$\frac{1}{2}$ab即可解决问题.
解答 解:如图,连接AD、BF.设AC=a,BC=b,
∵AB是直径,
∴∠ACB=90°
∵四边形ACDE、四边形BCFG都是正方形,
∴∠ACD=∠BCF=∠ACB=90°,
∴A、C、F共线,B、C、D共线,
∴∠DAC=∠BFC=45°,
∴AD∥BF,
∵DP=PF,AO=OB,
∴AD+BF=2PO,
∴$\sqrt{2}$a+$\sqrt{2}$b=12$\sqrt{2}$,
∴a+b=12,
又∵a2+b2=100,
∴a2+2ab+b2=144,
∴2ab=44,
∴S△ABC=$\frac{1}{2}$ab=11.
点评 本题考查正方形的性质、图象中位线定理,勾股定理等知识,解题的关键是添加辅助线,构造梯形,利用梯形中位线解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | -a(3a2-1)=-3a3-a | B. | (-2a-3)(2a-3)=9-4a2 | ||
C. | (2+x)(x-2)=4-x2 | D. | (ab-c)(-c+ab)=a2b2-c2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | b5•b5=2b5 | B. | (an-1)3=a3n-1 | C. | a+2a2=3a3 | D. | (a-b)5(b-a)4=(a-b)9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com