精英家教网 > 初中数学 > 题目详情
如图,CE是梯形OABD的中位线,B点在函数y=的图象上,若A(13,0)、C(8,2),则k的值为( )

A.1
B.4
C.8
D.12
【答案】分析:若CE是梯形OABD的中位线,那么C是AB的中点,根据A、C的坐标即可确定点B的坐标,然后将其代入双曲线的解析式中即可得到k的值.
解答:解:∵CE是梯形OABD的中位线,
∴C是线段AB的中点;
已知:A(13,0)、C(8,2),故B(3,4),
由于点B位于反比例函数的图象上,所以k=3×4=12,
故选D.
点评:此题主要考查的是梯形中位线定理以及反比例函数解析式的确定,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)除了正方形外,写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:
矩形、直角梯形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB,并写出点M的坐标;
(3)如图2,以△ABC的边AB,AC为边,向三角形外作正方形ABDE及ACFG,连接CE,BG相交于O点,P是线段DE上任意一点.求证:四边形OBPE是勾股四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=2
2
时(如图),求证:CD是⊙O的切线;
(2)当OC>2
2
时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广陵区二模)如图,面积为39的直角梯形OABC的直角顶点C在x轴上,点C坐标为(8
2
,0),AB=5
2
,点D是AB边上的一点,且AD:BD=2:3.有一45°的角的顶点E在x轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点D、E、F按顺时针排列),连接DF.设CE=x,OF=y.
(1)求点D的坐标及∠AOC的度数;
(2)若点E在x轴正半轴上运动,求y与x的函数关系式;
(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广东广州卷)数学(解析版) 题型:解答题

已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=OA.

(1)当OC=时(如图),求证:CD是⊙O的切线;

(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE.

①当D为CE中点时,求△ACE的周长;

②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE·ED的值;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省扬州市广陵区中考二模数学卷(解析版) 题型:解答题

如图,面积为39的直角梯形OABC的直角顶点C轴上,点C坐标为AB=,点DAB边上的一点,且ADBD=2︰3.有一45°的角的顶点E轴上运动,角的一边过点D,角的另一边与直线OA交于点F(点DEF按顺时针排列),连结DF.设CE=OF=.

(1)求点D的坐标及的度数;

(2)若点E轴正半轴上运动,求的函数关系式;

(3)在点E的运动过程中,是否存在某一时刻,使得△DEF成为等腰三角形?若存在,请求出所有符合条件的点F的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案