精英家教网 > 初中数学 > 题目详情

【题目】如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为(  )

A.302x)(40x)=600B.30x)(40x)=600

C.30x)(402x)=600D.302x)(402x)=600

【答案】D

【解析】

设剪去小正方形的边长是xcm,则纸盒底面的长为(402xcm,宽为(302xcm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.

解:设剪去小正方形的边长是xcm,则纸盒底面的长为(402xcm,宽为(302xcm

根据题意得:(402x)(302x)=600

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70≈1.41≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在直角坐标系中,矩形ABCO的边OAx轴上,边OCy轴上,点B的坐标为(13),将矩形沿对角线AC翻折,B点落在D点的位置,且ADy轴于点E。那么点D的坐标为(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,函数y=﹣x+5的图象与函数yk0)的图象相交于点A,并与x轴交于点CSAOC15.点D是线段AC上一点,CDAC23

1)求k的值;

2)根据图象,直接写出当x0时不等式>﹣x+5的解集;

3)求△AOD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数ymx+nm0)的图象与y轴交于点C,与反比例函数yk0)的图象交于AB两点,点A在第一象限,纵坐标为4,点B在第三象限,BMx轴,垂足为点MBMOM2

1)求反比例函数和一次函数的解析式.

2)连接OBMC,求四边形MBOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的外接圆,于点,延长于点,若,则的长是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABCD.若DAB30°,则菱形ABCD的面积与正方形ABCD的面积之比是(  )

A.1B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图1所示建立直角坐标系),抛物线顶点为点B

1)求该抛物线的函数表达式.

2)当球运动到点C时被东东抢到,CDx轴于点DCD2.6m

①求OD的长.

②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E41.3).东东起跳后所持球离地面高度h1m)(传球前)与东东起跳后时间ts)满足函数关系式h1=﹣2t0.52+2.70≤t≤1);小戴在点F1.50)处拦截,他比东东晚0.3s垂直起跳,其拦截高度h2m)与东东起跳后时间ts)的函数关系如图2所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中球运动时间忽略不计).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子中装有两个红球和一个蓝球.这些球除颜色外都相同.

1)从中随机摸出一个球.记下颜色后放回.再从中随机摸出一个球.

①请用列表法或树状图法,求第一次摸到蓝球,第二次摸到红球的概率;

②请直接写出两次摸到的球的颜色能配成紫色的概率   

2)从中随机摸出一个球,记下颜色后不放回.再从中随机摸出一个球,请直接写出两次摸到的球的颜色能配成紫色的概率   

查看答案和解析>>

同步练习册答案