精英家教网 > 初中数学 > 题目详情
已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.

(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.
(1)证明见解析;(2)16.

试题分析:(1)根据菱形的对边平行,可得出∠1=∠2,结合∠AED=∠B即可证明两三角形都得相似.(2)根据(1)的结论可得出 ,进而代入可得出AE•DE的值.
试题解析:(1)如图, ∵四边形ABCD是菱形,∴AD∥BC.∴∠1=∠2.
又∵∠B=∠AED,∴△ABE∽△DEA.

(2)∵△ABE∽△DEA,∴.∴AE•DE=AB•DA.
∵四边形ABCD是菱形,AB=4,∴AB=DA=4.
∴AE•DE=AB2=16.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD是一个拦河坝的截面图,坝高为6米.背水坡AD的坡角,为了提高河坝的抗洪能力,防汛指挥部决定加固河坝,若坝顶CD加宽0.8米,新的背水坡EF的坡度为1:1.4.河坝总长度为500米.

(1)求完成该工程需要多少立方米方土?
(2)某工程队在加固600立方米土后,采用新的加固模式,这样每天加固方数是原来的2倍,结果只用11天完成了大坝加固的任务.请你求出该工程队原来每天加固多少立方米土?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,△是等边三角形,点分别在边上,

(1)求证:△∽△;(2)如果,求的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC和△DEF相似,且△ABC的三边长为3、4、5,如果△DEF的周长为6,那么下列不可能是△DEF一边长的是(   )
A.1.5;B.2;C.2.5;D.3.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点F是平行四边形ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是 (  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

查看答案和解析>>

同步练习册答案