精英家教网 > 初中数学 > 题目详情
2.如图,直线AB∥CD,AF交CD于点E,∠CEA=45°,则∠A等于(  )
A.35°B.45°C.50°D.135°

分析 根据两直线平行,内错角相等解答即可.

解答 解:∵AB∥CD,
∴∠A=∠CEA,
∵∠CEA=45°,
∴∠A=45°.
故选B.

点评 本题考查了平行线的性质,是基础题,熟记性质并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.已知函数y=x2+3kx+k+1的图象的顶点在y轴上,那么函数的关系式是y=x2+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.有如下命题:1有理数与数轴上的点一一对应;2无理数包括正无理数,0,负无理数;3如果一个数的平方根是这个数本身,那么这个数是1或0;4一个实数的立方根不是正数就是负数.其中错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中∠C=90°,AC=BC=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为$\frac{1}{2}$π-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解不等式组:$\left\{\begin{array}{l}{4x>2x-6}\\{\frac{x-1}{3}≤\frac{x+1}{9}}\end{array}\right.$,并把不等式组的解集表示在数轴上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.若关于a的方程(a-1)x2+x+a2-2a-1=0的一根为-1,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(-1,-1),所在位置的坐标为(2,-1),那么,所在位置的坐标为(-3,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,抛物线y=ax2+bx+5与x轴交于A(1,0)、B(5,0)两点,点D是抛物线上横坐标为6的点.点P在这条抛物线上,且不与A、D两点重合,过点P作y轴的平行线与射线AD交于点Q,过点Q作QF垂直于y轴,点F在点Q的右侧,且QF=2,以QF、QP为邻边作矩形QPEF.设矩形QPEF的周长为d,点P的横坐标为m.
(1)求这条抛物线所对应的函数表达式.
(2)求这条抛物线的对称轴将矩形QPEF的面积分为1:2两部分时m的值.
(3)求d与m之间的函数关系式及d随m的增大而减小时d的取值范围.
(4)当矩形QPEF的对角线互相垂直时,直接写出其对称中心的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:$\frac{4+x}{x-1}-5=\frac{2x}{x+1}$.

查看答案和解析>>

同步练习册答案