精英家教网 > 初中数学 > 题目详情
如图,已知CD为⊙O的直径,点A为DC延长线上一点,B为⊙O上一点,且∠ABC=∠D.
(1)求证:AB为⊙O的切线;
(2)若tanD=
1
2
,求sinA的值.
(1)证明:连结OB,如图,
∵CD为⊙O的直径,
∴∠BDC=90°,即∠OBD+∠OBC=90°
∵OB=OD,
∴∠D=∠OBD,
∵∠ABC=∠D,
∴∠ABC=∠OBD,
∴∠OBA=90°,
∴OB⊥AB,
∴AB为⊙O的切线;

(2)设BC=x,
在Rt△BCD中,tanD=
BC
BD
=
1
2

∴BD=2x,
∴CD=
BD2+BC2
=
5
x,
∴OB=OC=
5
2
x,
∵∠ABC=∠D,∠BAC=∠DAB,
∴△ABC△ADB,
AC
AB
=
BC
BD
=
1
2

∴AB=2AC,
在Rt△OAB中,∵OB2+AB2=AO2
∴(
5
2
x)2+(2AC)2=(
5
2
x+AC)2
∴AC=
5
3
x,
∴OA=
5
2
x+
5
3
x=
5
5
6
x,
∴sinA=
OB
OA
=
5
x
2
5
5
x
6
=
3
5
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知圆O的半径为5,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O与AB切于点C,∠BCE=60°,DC=6,DE=4,则S△CDE为(  )
A.6
5
B.6
3
C.6
2
D.6

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.
(1)求证:△ABC△ACD;
(2)若P是AY上一点,AP=4,且sinA=
3
5

①如图2,当点D与点P重合时,求R的值;
②当点D与点P不重合时,试求PD的长(用R表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:AB是⊙O的直径,BC、CD分别是⊙O的切线,切点分别为B、D,E是BA和CD的延长线的交点.
(1)猜想AD与OC的位置关系,并加以证明;
(2)设AD•OC的积为S,⊙O的半径为r,试探究S与r的关系;
(3)当r=2,sin∠E=
1
3
时,求AD和OC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PA=PB,连接BO并延长与切线PA相交于点Q.求证:
(1)PB是⊙O的切线;
(2)AQ•PQ=OQ•BQ.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形纸片ABCD,点E是AB上一点,且BE:EA=5:3,EC=15
5
,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(初三)如图,△ABC中,AB=AC,I为△ABC的内心,AI的延长线交△ABC的外接圆于点D,过点I作BC的平行线分别交AB、AC于E、F,若O是△DEF外接圆的圆心.
证明:(1)O点在线段AD上;
(2)AB、AC是⊙O的切线.
(初二)如图,四边形ABCD中,∠ADC=60°,∠ABC=30°,DA=DC,求证,BD2=AB2+BC2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
求证:AB是⊙O的切线.

查看答案和解析>>

同步练习册答案