精英家教网 > 初中数学 > 题目详情
15.某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克,经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?

分析 设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.

解答 解:设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,
根据题意得:(60-40-x)(100+10x)=2240,
整理得:x2-10x+24=0,
解得:x1=4,x2=6.
答:每千克樱桃应降价4元或6元.

点评 本题考查了一元二次方程的应用,根据总利润=每千克利润×销售数量,列出关于x的一元二次方程是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.如图,点A在直线l1上,点B,C分别在直线l2上,AB⊥l2,AC⊥l1,AB=4,BC=3,则下列说法正确的是(  )
A.点B到直线l1的距离等于4B.点C到直线l1的距离等于5
C.点C到AB的距离等于4D.点B到直线AC的距离等于5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,反比例函数y=$\frac{k}{x}$的图象与过两点A(0,-2),B(-1,0)的一次函数的图象在第二象限内相交于点M(m,4).
(1)求反比例函数与一次函数的表达式;
(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,a∥b,∠2=62°,则∠1=(  )
A.62°B.128°C.118°D.28°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列各式成立的是(  )
A.$\sqrt{(-2)^{2}}$=-2B.$\sqrt{(-2)^{2}}$=2C.$\sqrt{{6}^{2}}$=±6D.$\sqrt{(-5)^{2}}$=±5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在△ABC中,以AC为直径的⊙O分别交AB、BC于点D、E,连接DE,AD=BD,∠ADE=120°.
(1)试判断△ABC的形状并说明理由.
(2)若AC=2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=$\frac{2}{3}$x2+bx+c经过B点,且顶点在直线x=$\frac{5}{2}$上
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,若M点是CD所在指向下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N,设点M的横坐标为t,MN的长度为L,求l与t之间的函数关系式,并求l取最大值时,点M的坐标;
(3)△ABO沿x轴向右平移得到△DCE,当四边形ABCD是菱形时,连接BD,点P在抛物线上,若△PBD是以BD为直角边的直角三角形,请求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,AB为半圆O的直径,C为$\widehat{AB}$的中点,若AB=2,则图中阴影部分的面积是(  )
A.$\frac{π}{2}$B.$\frac{1}{2}$+$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{1}{2}$+$\frac{π}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.36%=$\frac{9}{25}$(用最简分数表示).

查看答案和解析>>

同步练习册答案