精英家教网 > 初中数学 > 题目详情
已知:如图,在△ABC中,AB=AC,D是边BC延长线上一点,E是边AC上一点,如果∠EBC=精英家教网∠D,BC=4,cos∠ABC=
1
3

(1)求证:
CE
AB
=
BC
BD

(2)如果S1、S2分别表示△BCE、△ABD的面积,求:S1•S2的值;
(3)当∠AEB=∠ACD时,求△ACD的面积.
分析:(1)由AB=AC,根据“等边对等角”得到一对角相等,由已知的两角相等,利用两对对应角相等的两三角形相似,得到三角形BCE与三角形DBA相似,由相似得比例得证;
(2)过A作AH垂直于BC,由AB=AC,根据“三线合一”得到BH等于BC的一半,由BC的长求出BH的长,在根据锐角三角形函数的余弦函数定义,由BH的长和cos∠ABC的值求出AB的长,在直角三角形中,由AB和BH,利用勾股定理求出AH的长,再由第一问的相似得到对应高之比等于相似比,即等于对应边之比,化比例式为乘积式,把求出的AH和BC代入即可求出AH•BC的值,然后利用三角形的面积公式分别表示出S1与S2,进而表示出S1•S2,等量代换后把求出AH•BC的值代入即可求出值;
(3)由∠AEB=∠ACD,根据等角的邻补角相等得到∠BEC=∠ACB,又AB=AC,根据“等边对等角”得到∠ABC=∠ACB,等量代换得到∠BEC=∠ACB=∠ABC,根据三角形的内角和定理,等量代换得到∠BAC=∠EBC,又∠AEB=∠ACD,等量代换得到∠BAC=∠D,再根据已知的两角相等,利用两对对应角相等的两三角形相似得到三角形ABC与三角形DBA相似,根据相似得比例,由AB和BC的长求出BD的长,进而求出CD的长,然后由CD边上的高AH,利用三角形的面积公式求出三角形ACD的面积.
解答:解:(1)∵AB=AC,
∴∠ABC=∠ACB.(1分)
∵∠EBC=∠D,
∴△BCE∽△DBA.(2分)
CE
AB
=
BC
BD
.(1分)

(2)作AH⊥BC于点H,
精英家教网∵AB=AC,BC=4,
∴BH=2.
∵cos∠ABC=
1
3

BH
AB
=
1
3

∴AB=AC=6.(1分)
在Rt△ABH中,
AH=
AB2-BH2
=
62-22
=4
2
.(1分)
过E作EG⊥BC,交BC于G,
∵△BCE∽△DBA,
EG
AH
=
BC
BD
.(1分)
EG•BD=AH•BC=4
2
×4=16
2
.(1分)
S1S2=
1
2
BC•EG•
1
2
BD•AH=
1
4
(AH•BC)2

=
1
4
×(16
2
)2=128
.(1分)

(3)∵∠AEB=∠ACD,
∴∠BEC=∠ACB,又∠ABC=∠ACB.
∴∠BEC=∠ACB=∠ABC.
∵∠BAC=180°-∠ABC-∠ACB,∠EBC=180°-∠BEC-∠ACB,
∴∠BAC=∠EBC.
∵∠EBC=∠D.
∴∠BAC=∠D.(1分)
又∵∠ABC=∠DBA,
∴△ABC∽△DBA.(1分)
BC
AB
=
AB
BD

4
6
=
6
BD
.(1分)
∴BD=9.
∴CD=5.(1分)
S△ACD=
1
2
CD•AH=
1
2
×5×4
2
=10
2
.(1分)
点评:此题考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解三角形的知识.本题主要利用转化的数学思想,借助图形的性质、公式或已知条件,将问题通过转化,进而达到解决问题的目的,转化的数学思想就是要我们深刻理解并灵活运用新旧知识的联系.第2、3问要求三角形的面积,分别过A和E作出BC边上的高是解题的突破点,熟练掌握相似三角形的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案