精英家教网 > 初中数学 > 题目详情
如图是某种圆形装置的示意图,圆形装置中,⊙O的直径AB=5,AB的不同侧有定点C和动点P,tan∠CAB=
4
3
.其运动过程是:点P在弧AB上滑动,过点C作CP的垂线,与PB的延长线交于点Q.
(1)当PC=______时,CQ与⊙O相切;此时CQ=______.
(2)当点P运动到与点C关于AB对称时,求CQ的长;
(3)当点P运动到弧AB的中点时,求CQ的长.
(1)当CP过圆心O,即CP为圆O的直径时,CQ与⊙O相切,理由为:
∵PC⊥CQ,PC为圆O的直径,
∴CQ为圆O的切线,
此时PC=5;
∵∠CAB=∠CPQ,
∴tan∠CAB=tan∠CPQ=
4
3

∴tan∠CPQ=
CQ
CP
=
CQ
5
=
4
3

则CQ=
20
3

故答案为:5;
20
3

(2)当点P运动到与点C关于AB对称时,如图1所示,此时CP⊥AB于D,

又∵AB为⊙O的直径,∴∠ACB=90°,
∵AB=5,tan∠CAB=
4
3

∴BC=4,AC=3,
又∵S△ABC=
1
2
AC•BC=
1
2
AB•CD,
∴AC•BC=AB•CD,即3×4=5CD,
∴CD=
12
5

∴PC=2CD=
24
5

在Rt△PCQ中,∠PCQ=90°,∠CPQ=∠CAB,
∴CQ=PCtan∠CPQ=
4
3
PC,
∴CQ=
4
3
×
24
5
=
32
5

(3)当点P运动到弧AB的中点时,如图2所示,过点B作BE⊥PC于点E,

∵P是弧AB的中点,∠PCB=45°,
∴CE=BE=2
2

又∠CPB=∠CAB,
∴tan∠CPB=tan∠CAB=
BE
PE
=
4
3

∴PE=
BE
tan∠CPB
=
3
4
BE=
3
2
2

∴PC=CE+PE=2
2
+
3
2
2
=
7
2
2

由(2)得,CQ=
4
3
PC=
14
2
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系内,半径为t的⊙D与x轴交于点A(1,0)、B(5,0),点D在第一象限,点C的坐标为(0,-2),过B点作BE⊥CD于点E.
(1)当t为何值时,⊙D与y轴相切?并求出圆心D的坐标;
(2)直接写出,当t为何值时,⊙D与y轴相交、相离;
(3)直线CE与x轴交于点F,当△OCF与△BEF全等时,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两同心圆的圆心为O,大圆的弦AB、AC分别切小圆于D、E两点,小圆的劣弧
DE
的度数为110゜,则大圆的劣弧
BC
的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°.
(l)求证:CD是⊙O的切线;
(2)若CD=3
3
,求扇形0AC的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,A是⊙O上的一点,AC为⊙O的切线,AB为弦,若∠B=59°,则∠BAC=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,DE=3,连接BD,过点E作EMBD,交BA的延长线于点M.
(1)求⊙O的半径;
(2)求证:EM是⊙O的切线;
(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=
1
2
AB;
(3)点M是
AB
的中点,CM交AB于点N,若AB=4,求MN•MC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=______度.

查看答案和解析>>

同步练习册答案