精英家教网 > 初中数学 > 题目详情
14.如图,在四边形ABCD中,对角线AC、BD相交于点O,且OB=OD,点E在线段OA上,连接BE,DE.给出下列条件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.请你从中选择两个条件,使四边形BCDE是菱形,并给予证明.你选择的条件是①②(只填写序号).

分析 由“对角线互相垂直的平行四边形”是菱形可知:首先证明四边形BCDE是平行四边形,选项①可满足;再使BD⊥CE即可,选项②满足,问题得解.

解答 解:选择的条件是①②,理由如下:
∵四边形ABCD中,对角线AC、BD相交于点O,OB=OD,OC=OE,
∴四边形BCDE是平行四边形,
∵AB=AD,BO=OD,
∴AO⊥BD,
即BD⊥CE,
∴四边形BCDE是菱形,
故答案为:①②.

点评 本题考查了菱形的判断、平行四边形的判断和性质以及等腰三角形的性质,熟记菱形的各种判断方法是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.解方程:2(x-1)2-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在?ABCD中,ED=2,BC=5,∠ABC的平分线交AD于点E,则AB的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,一次函数y=-$\frac{\sqrt{3}}{3}$x+b的图象与x轴交于点为A(-4$\sqrt{3}$,0),与y轴交于点为B.
(1)求点B坐标及∠BAO度数;
(2)如果点C坐标为(0,2),四边形ABCD是直角梯形,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(  )
A.当a=1时,函数图象过点(-1,1)
B.当a=-2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.不论a为何值,函数图象必经过(2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知:如图,在四边形ABCD中,对角线AC、BD交于点O,线段BD垂直平分AC,DC∥AB.
求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.通过调查,一段时间内,C、D两城生产化肥供给A、B两乡,其中A、B两乡需求总量y(吨)与化肥市场价格x(百元/吨)(3≤x≤8),存在下列关系:
x4567
y550500450400
C、D两城生产总量Z(吨)与化肥市价x(百元/吨)成正比例函数:Z=100x,已知C城生产总量为240吨,A乡需求量为200吨.如果需求量y与生产量Z相等,此时处于平衡状态.
(1)请通过描点画图,探究y与x之间的函数关系;
(2)某运输公司承担化肥运输任务,已知从C城运往A、B两乡运费分别为20元/t和15元/t;从D城运往A、B两乡费用分别未能25元/t和24元/t,当市场处于平衡状态时,如何调运可使总费用最少?并求出最小费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知AB∥CD,点C在点D的右侧,∠ADC=60°,∠ABC、∠ADC的平分线交于点E.
(1)若点B在点A的左侧,如图1,∠ABC=α,求∠BED的大小(用含α的式子表示);
解:过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
请完成余下的解答过程.
(2)将图1中的线段BC沿DC方向平移,当点B移动到点A的右侧时,如图2,设∠ABC=β,请直接写出∠BED的大小.

查看答案和解析>>

同步练习册答案