£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö£©ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOy£¨Èçͼ1£©£¬Ò»´Îº¯ÊýµÄͼ ÏñÓëyÖá½»ÓÚµãA£¬µãMÔÚÕý±ÈÀýº¯ÊýµÄͼÏñÉÏ£¬ÇÒMO£½MA£®¶þ´Îº¯Êýy£½x2£«bx£«cµÄͼÏñ¾­¹ýµãA¡¢M£®

£¨1£©ÇóÏ߶ÎAMµÄ³¤£»

£¨2£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»

£¨3£©Èç¹ûµãBÔÚyÖáÉÏ£¬ÇÒλÓÚµãAÏ·½£¬µãCÔÚÉÏÊö¶þ´Îº¯ÊýµÄͼÏñÉÏ£¬µãDÔÚÒ»´Îº¯ÊýµÄͼÏñÉÏ£¬ÇÒËıßÐÎABCDÊÇÁâÐΣ¬ÇóµãCµÄ×ø±ê£®

 

¡¾´ð°¸¡¿

(±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö)

[½â] (1) ¸ù¾ÝÁ½µãÖ®¼ä¾àÀ빫ʽ£¬ÉèM(a, a)£¬ÓÉ| MO |=| MA |, ½âµÃ£ºa=1£¬ÔòM(1, ),

¼´AM=¡£

(2) ¡ß A(0, 3)£¬¡à c=3£¬½«µãM´úÈëy=x2+bx+3£¬½âµÃ£ºb= -£¬¼´£ºy=x2-x+3¡£

(3) C(2, 2) (¸ù¾ÝÒÔAC¡¢BDΪ¶Ô½ÇÏßµÄÁâÐÎ)¡£×¢Ò⣺A¡¢B¡¢C¡¢DÊÇ°´Ë³ÐòµÄ¡£

[½â] ÉèB(0, m) (m<3)£¬C(n, n2-n+3)£¬D(n, n+3)£¬

| AB |=3-m£¬| DC |=yD-yC=n+3-(n2-n+3)=n-n2£¬

| AD |==n£¬

| AB |=| DC |Þ3-m=n-n2¡­j£¬| AB |=| AD |Þ3-m=n¡­k¡£

½âj£¬k£¬µÃn1=0(ÉáÈ¥)£¬»òÕßn2=2£¬½«n=2´úÈëC(n, n2-n+3)£¬µÃC(2, 2)¡£

¡¾½âÎö¡¿ÂÔ

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷6·Ö£©Èçͼ£¨1£©£¬ÔÚ¡÷ABCºÍ¡÷EDCÖУ¬AC£½CE£½CB£½CD£¬¡ÏACB£½¡ÏECD£½£¬ABÓëCE½»ÓÚF£¬EDÓëAB¡¢BC·Ö±ð½»ÓÚM¡¢H£®

(1)ÇóÖ¤:CF£½CH£»

(2)Èçͼ(2)£¬¡÷ABC²»¶¯£¬½«¡÷EDCÈƵãCÐýתµ½¡ÏBCE=ʱ£¬ÊÔÅжÏËıßÐÎACDMÊÇʲôËıßÐΣ¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷6·Ö£©
ÒÑÖª£ºÖ±½Ç×ø±êϵxoyÖУ¬½«Ö±ÏßÑØyÖáÏòÏÂƽÒÆ3¸öµ¥Î»³¤¶ÈºóÇ¡ºÃ¾­¹ýB(-3£¬0)¼°yÖáÉϵÄCµã£®ÈôÅ×ÎïÏßÓëÖá½»ÓÚA£¬BÁ½µã£¨µãAÔÚµãBµÄÓҲࣩ£¬ÇÒ¾­¹ýµãC£¬£¨1£©ÇóÖ±Ïß¼°Å×ÎïÏߵĽâÎöʽ£»£¨2£©ÉèÅ×ÎïÏߵĶ¥µãΪ£¬µãÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬ÇÒ£¬ÇóµãµÄ×ø±ê£»

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011Äê³õÖбÏÒµÉýѧ¿¼ÊÔ£¨¹ã¶«ÉîÛÚ¾í£©Êýѧ ÌâÐÍ£º½â´ðÌâ

£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷6·Ö£©Èçͼ£¬ÔÚÌÝÐÎABCDÖУ¬AD//BC£¬AB£½DC£¬¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£¬²¢ÑÓ³¤DEÖÁF£¬Ê¹EF£½DE£®Áª½áBF¡¢CD¡¢AC£®
£¨1£©ÇóÖ¤£ºËıßÐÎABFCÊÇƽÐÐËıßÐΣ»
£¨2£©Èç¹ûDE2£½BE¡¤CE£¬ÇóÖ¤ËıßÐÎABFCÊǾØÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2010Äê¸ß¼¶ÖеÈѧУÕÐÉúÈ«¹úͳһ¿¼ÊÔÊýѧ¾í£¨ÔÆÄÏÇú¾¸£© ÌâÐÍ£º½â´ðÌâ

£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡Ìâ6·Ö£©
(1) ÔÚÈçͼËùʾµÄƽÃæÖ±½Ç×ø±êϵÖУ¬ÏÈ»­³ö¡÷OAB ¹ØÓÚyÖá¶Ô³ÆµÄͼÐΣ¬ÔÙ»­³ö¡÷OABÈƵãOÐýת180¡ãºóµÃµ½µÄͼÐΣ® 
£¨2£©ÏÈÔĶÁºó×÷´ð£ºÎÒÃÇÒѾ­ÖªµÀ£¬¸ù¾Ý¼¸ºÎͼÐεÄÃæ»ý  ¹Øϵ¿ÉÒÔ˵Ã÷Íêȫƽ·½¹«Ê½£¬Êµ¼ÊÉÏ»¹ÓÐһЩµÈʽҲ¿ÉÒÔÓÃÕâÖÖ·½Ê½¼ÓÒÔ˵Ã÷£¬ÀýÈ磺(2a +b)( a +b) =" 2a2" +3ab +b2£¬¾Í¿ÉÒÔÓÃͼ22£­1µÄÃæ»ý¹ØϵÀ´ËµÃ÷£®

¢Ù ¸ù¾Ýͼ22£­2д³öÒ»¸öµÈʽ    £»
¢Ú ÒÑÖªµÈʽ£º(x +p£©(x +q£©="x2" + (p +q) x + pq£¬ÇëÄã»­³öÒ»¸öÏàÓ¦µÄ¼¸ºÎͼÐμÓÒÔ˵Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011Äê³õÖбÏÒµÉýѧ¿¼ÊÔ£¨Ìì½ò¾í£©Êýѧ ÌâÐÍ£º½â´ðÌâ

£¨±¾ÌâÂú·Ö12·Ö£¬Ã¿Ð¡ÌâÂú·Ö¸÷4·Ö£©ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOy£¨Èçͼ1£©£¬Ò»´Îº¯ÊýµÄͼ ÏñÓëyÖá½»ÓÚµãA£¬µãMÔÚÕý±ÈÀýº¯ÊýµÄͼÏñÉÏ£¬ÇÒMO£½MA£®¶þ´Îº¯Êýy£½x2£«bx£«cµÄͼÏñ¾­¹ýµãA¡¢M£®

£¨1£©ÇóÏ߶ÎAMµÄ³¤£»

£¨2£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»

£¨3£©Èç¹ûµãBÔÚyÖáÉÏ£¬ÇÒλÓÚµãAÏ·½£¬µãCÔÚÉÏÊö¶þ´Îº¯ÊýµÄͼÏñÉÏ£¬µãDÔÚÒ»´Îº¯ÊýµÄͼÏñÉÏ£¬ÇÒËıßÐÎABCDÊÇÁâÐΣ¬ÇóµãCµÄ×ø±ê£®

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸