精英家教网 > 初中数学 > 题目详情

矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线数学公式与BC相交于点D,抛物线y=ax2+bx经过A、D两点.
(1)求抛物线的解析式;
(2)连接AD,试判断△OAD的形状,并说明理由.
(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.

解:(1)由题意得,点D的纵坐标为3,
∵点D在直线y=x上,
∴点D的坐标为(9,3),
将点D(9,3)、点A(10,0)代入抛物线可得:
解得:
故抛物线的解析式为:y=-x2+x.

(2)∵点D坐标为(9,3),点A坐标为(10,0),
∴OA=10,OD==3,AD==
从而可得OA2=OD2+AD2
故可判断△OAD是直角三角形.

(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,

此时∠POM=∠DOA,∠OPM=∠ODA,
故可得△OPM∽△ODA,OP=OA=5,
即可得此时点P的坐标为(5,0).
②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,

由题意可得,点M的横坐标为5,代入直线方程可得点M的纵坐标为
故可求得OM=
∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,
∴∠OP′M=∠DOA,
∴△P′OM∽△ODA,
故可得=,即=
解得:MP′=
又∵MN=点M的纵坐标=
∴P′N=-=15,
即可得此时点P′的坐标为(5,-15).
综上可得存在这样的点P,点P的坐标为(5,0)或(5,-15).
分析:(1)根据题意可得出点D的纵坐标为3,代入直线解析式可得出点D的横坐标,从而将点D和点A的坐标代入可得出抛物线的解析式.
(2)分别求出OA、OD、AD的长度,继而根据勾股定理的逆定理可判断出△OAD是直角三角形.
(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,利用相似的性质分别得出点P的坐标即可.
点评:此题考查了二次函数的综合题,解答本题的关键是结合直线解析式求出点D的坐标,得出抛物线的解析式,在第三问的解答中要分类讨论,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。

1.若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求的值:

2.若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

 

查看答案和解析>>

科目:初中数学 来源:2012届山东省宁津县实验中学九年级中考模拟数学试卷(带解析) 题型:解答题

如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。
【小题1】若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求的值:
【小题2】若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省九年级中考模拟数学试卷(解析版) 题型:解答题

如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数的图象与边BC交于点F。

1.若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求的值:

2.若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年湖北省荆门市东宝区中考模拟数学卷 题型:解答题

(本小题满分10分)如图,将—矩形OABC放在直角坐际系中,O为坐标原点.点Ax轴正半轴上.点E是边AB上的—个动点(不与点AB重合),过点E的反比例函数的图象与边BC交于点F.

(1)若△OAE、△OCF的而积分别为.且,求k的值.

(2)若OA=2,0C=4,问当点E运动到什么位置时,四边形OAEF的面积最大,其最大值为多少?

 

查看答案和解析>>

同步练习册答案