精英家教网 > 初中数学 > 题目详情

某篮球队12名队员的年龄如表:

年龄(岁)

18

19

20

21

人数

5

4

1

2

则这12名队员年龄的众数和平均数分别是(  )

 

A.

18,19

B.

19,19

C.

18,19.5

D.

19,19.5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在函数y=中,自变量x的取值范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.

(1)求抛物线的解析式;

(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;

(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,在平面直角坐标系中,二次函数y=﹣x2+12的图象与y轴交于点A,与x轴交于B,C两点(点B在点C的左侧),连接AB,AC.

(1)点B的坐标为    ,点C的坐标为   

(2)过点C作射线CD∥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP(点M不与点A,点B重合),过点M作MN∥BC分别交AC于点Q,交射线CD于点N (点 Q不与点P重合),连接PM,PN,设线段AP的长为n.

①如图2,当n<AC时,求证:△PAM≌△NCP;

②直接用含n的代数式表示线段PQ的长;

③若PM的长为,当二次函数y=﹣x2+12的图象经过平移同时过点P和点N时,请直接写出此时的二次函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:


在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为   m.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求证:方程总有两个实数根;

(2)若方程的两个实数根都是整数,求正整数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是(  )

 

A.

=2

B.

=2

 

C.

=2

D.

=

查看答案和解析>>

科目:初中数学 来源: 题型:


数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算+++…+

第1次分割,把正方形的面积二等分,其中阴影部分的面积为

第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

第3次分割,把上次分割图中空白部分的面积继续二等分,…;

第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是

根据第n次分割图可得等式:+++…+=1﹣

探究二:计算+++…+

第1次分割,把正方形的面积三等分,其中阴影部分的面积为

第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

第3次分割,把上次分割图中空白部分的面积继续三等分,…;

第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是

根据第n次分割图可得等式:+++…+=1﹣

两边同除以2,得+++…+=

探究三:计算+++…+

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算+++…+

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式: +++…+=1 

所以,+++…+=  

拓广应用:计算 +++…+

查看答案和解析>>

同步练习册答案