【题目】如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.
(1)求证:四边形AECD是菱形;
(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.
【答案】(1)证明见解析;(2)BC=6.
【解析】(1)由ASA证明△AOD≌△COE,得出对应边相等AD=CE,证出四边形AECD是平行四边形,即可得出四边形AECD是菱形;
(2)由菱形的性质得出AC⊥ED,再利用三角函数解答即可.
(1)∵点O是AC中点,
∴OA=OC,
∵CE∥AB,
∴∠DAO=∠ECO,
在△AOD和△COE中,
,
∴△AOD≌△COE(ASA),
∴AD=CE,
∵CE∥AB,
∴四边形AECD是平行四边形,
又∵CD是Rt△ABC斜边AB上的中线,
∴CD=AD,
∴四边形AECD是菱形;
(2)由(1)知,四边形AECD是菱形,
∴AC⊥ED,
在Rt△AOD中,tan∠DAO==tan∠BAC=,
设OD=3x,OA=4x,
则ED=2OD=6x,AC=2OA=8x,由题意可得:=24,
解得:x=1,
∴OD=3,
∵O,D分别是AC,AB的中点,
∴OD是△ABC的中位线,
∴BC=2OD=6.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.
(1)若∠C=36°,求∠BAD的度数;
(2)求证:FB=FE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是上的一个动点,
(1)问题发现
如图1,当点在线段上运动时,过点作,垂足为点,过点作,垂足为点,且.
①与是全等三角形吗?请说明理由
②连接,试猜想的形状,并说明理由;
(2)类比探究
如图2,当在线段的延长线上时,过点作,垂足为点,过点作,垂足为点,且,试直接写出的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,BD=DC,DE⊥BC,交∠BAC的平分线于E,EM⊥AB,EN⊥AC,
(1)求证:BM=CN
(2)若AB=9,AC=5.求AM长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
B. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
C. “明天降雨的概率为”,表示明天有半天都在降雨
D. 了解一批电视机的使用寿命,适合用普查的方式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市购买大件物品都有送货上门服务,那么罗平沃尔玛超市一辆货车从超市出发,向东走了,到达小明家,继续向东走了到达小红家,又向西走了到达小英家,最后回到超市.
(1)请以超市为原点,以向东为正方向,用1个单位长度表示,画出数轴.并在数轴上表示出小明家、小红家、小英家的位置;
(2)小英家距小明家有多远?
(3)货车一共行驶了多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,作AB边的垂直平分线交直线BC于M,交AB于点N.
(1)如图,若,则=_________度;
(2)如图,若,则=_________度;
(3)如图,若,则=________度;
(4)由问,你能发现与∠A有什么关系?写出猜想,并证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com