【题目】如图,已知中,,,,、分别是、上的动点,,与关于直线对称,若是直角三角形,则的长为___.
【答案】或
【解析】
分三种情况:①当∠PAD=90,由平行四边形的性质得出CD=AB=3,AD=BC=5,AD∥BC,证明△ABP∽△CBA,得出,求出BP=,由轴对称的性质即可得出结果;
②∠APD=90,当点P与C重合时,得出该情况不成立;
③当点P与C不重合时,∠APD=90,作AG⊥BC于G,则EF与AG重合,根据三角形面积及勾股定理求出BF=.
分三种情况:
①当∠PAD=90,如图1所示:
∵四边形ABCD是平行四边形,
∴CD=AB=3,AD=BC=5,AD∥BC,
∴∠APB=∠PAD=90°,
∵AB=3,BC=5,∠BAC=90,
∴AC==4,
∵∠B=∠B,
∴△ABP∽△CBA,
∴,即,
解得:BP=,
∵EF⊥BC,△BEF与△PEF关于直线EF对称,
∴BF=PF=BP=;
②当∠APD=90时,点P与C重合时,如图2所示:
∵AB∥CD,
∴∠APD=∠ACD=∠BAC=90,
∵E在AB上,E和A重合,而AB≠AC,
则△BEF与△PEF关于直线EF不对称,
∴该情况不存在;
③当点P与C不重合时,∠APD=90,如图3所示:
作AG⊥BC于G,则EF与AG重合,
∵AB=3,BC=5,∠BAC=90,
∴AC==4,
∴AF=
∴BF==;
综上所述,若△APD是直角三角形,则BF的长为 或;
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,交于点,连接.
(1)如图1,点是上一点,连接,若,,,求的长;
(2)如图2,若,延长交延长线于点,以为斜边做等腰直角,连接,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.
(1)求证:∠PAC=∠ABC;
(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①平分弦的直径垂直于弦;②在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;③各角相等的圆外切多边形一定是正多边形;④各角相等的圆内接多边形一定是正多边形;⑤若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是.其中正确的个数( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
分组 | 分数段(分) | 频数 |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
(1)求全班学生人数和的值.
(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.
(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,该产品的日销售量y(个)与销售单价x(元/个)之间满足一次函数关系.关于日销售量y(个)与销售单价x(元/个)的几组数据如表:
x | 10 | 12 | 14 | 16 |
y | 300 | 240 | 180 | m |
(1)求出y与x之间的函数关系式(不要求写出自变量的取值范围)及m的值.
(2)按照(1)中的销售规律,当销售单价定为17.5元/个时,日销售量为 个,此时,获得日销售利润是 .
(3)为防范风险,该公司将日进货成本控制在900(含900元)以内,按照(1)中的销售规律,要使日销售利润最大,则销售单价应定为多少?并求出此时的最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究:
(1)问题发现:如图1,在等边△ABC中,点P是边BC上任意一点,连接AP,以AP为边作等边△APQ,连接CQ.求证:BP CQ;
(2)变式探究:如图2,在等腰△ABC中,ABBC,点P是边BC上任意一点,以AP为腰作等腰△APQ,使AP PQ,APQ ABC,连接CQ.判断∠ABC和∠ACQ的数量关系,并说明理由;
(3)解决问题:如图3,在正方形ADBC中,点P是边BC上一点,以AP为边作正方形 APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为6,,求正方形ADBC的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.
⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com