精英家教网 > 初中数学 > 题目详情
(2010•益阳)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).

【答案】分析:(1)证线段相等,可证线段所在的三角形全等.结合本题,证△MM′E≌△NN′F即可;
(2)由于M′E∥CD,则∠EM′M=∠FNN′=α,易证得△FNN′∽△EM′M,那么MM′:NN′=EM′:FN;而EM′=FN′,则比例式可化为:==tanα,由此可知:当α=45°时,MM′=NN′;当α≠45°时,MM′≠NN′.
解答:(1)解:在方形环中,
∵M'E⊥AD,N'F⊥BC,AD∥BC,
∴M'E=N'F,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF,
∴△MM'E≌△NN'F.
∴MM'=N'N;(5分)

(2)解法一:∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,
∴△NFN'∽△M'EM.                                          (8分)

∵M'E=N'F,
(或).                           (10分)
①当α=45°时,tanα=1,则MM′=NN′;
②当α≠45°时,MM′≠NN′,
(或).                                 (12分)
解法二:在方形环中,∠D=90°,
又∵M′E⊥AD,N′F⊥CD,
∴M′E∥DC,N′F=M′E.
∴∠MM′E=∠N′NF=α.
在Rt△NN′F与Rt△MM′E中,

(或).                                   (10分)
①当α=45°时,MM′=NN′;
②当α≠45°时,MM′≠NN′,则(或).          (12分)
点评:此题主要考查了相似三角形、全等三角形的判定和性质以及解直角三角形的应用等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2009年浙江省杭州市萧山区中考模拟数学试卷(党湾镇中 王建兴)(解析版) 题型:解答题

(2008•益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
(3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《锐角三角函数》(06)(解析版) 题型:解答题

(2010•益阳)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《图形的相似》(07)(解析版) 题型:解答题

(2010•益阳)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《三角形》(20)(解析版) 题型:解答题

(2010•益阳)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出的值(用含α的三角函数表示).

查看答案和解析>>

同步练习册答案