·ÖÎö £¨1£©½áÂÛ£º¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®ÔÚRt¡÷AOCÖУ¬ÓÉtan¡ÏACO=$\frac{OA}{OC}$=$\frac{\sqrt{3}}{3}$£¬ÍƳö¡ÏACO=30¡ã£¬ÔÚRt¡÷OBCÖУ¬ÓÉtan¡ÏBCO=$\frac{OB}{OC}$=$\sqrt{3}$£¬ÍƳö¡ÏBCO=60¡ã£¬¿ÉµÃ¡ÏACB=¡ÏACO+¡ÏBCO=90¡ã£»
£¨2£©ÉèP£¨m£¬$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©£¬×÷ÉäÏßCN£¬Ê¹µÃ¡ÏBCN=60¡ã£¬×÷FH¡ÍCNÓÚH£¬FG¡ÍAEÓÚG£¬ÔòFH=CF•cos30¡ã=$\frac{\sqrt{3}}{2}$CF£¬Ê×ÏÈÇó³öµãP×ø±ê£¬¶¯µãGµÄÔ˶¯Ê±¼ä=$\frac{EF}{1}$+$\frac{CF}{\frac{2\sqrt{3}}{3}}$=EF+$\frac{\sqrt{3}}{2}$CF=EF+FH£¬¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µ±EH¡ÍCNʱ£¬¶¯µãGµÄÔ˶¯Ê±¼ä×îС£¬Óɴ˼´¿É½â¾öÎÊÌ⣻
£¨3£©Çó³öÖ±ÏßAMµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãM×ø±ê£¬ÓÉÌâÒâC¡ä£¨t£¬$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©£¬·ÖÈýÖÖÇéÐÎÌÖÂÛ£¬Ïë°ì·¨Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣻
½â´ð ½â£º£¨1£©½áÂÛ£º¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
ÀíÓÉ£ºÈçͼ1ÖУ¬Á¬½ÓAC£®
¡ßÅ×ÎïÏßy=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-$\sqrt{3}$£©£¬
ÔÚRt¡÷AOCÖУ¬¡ßtan¡ÏACO=$\frac{OA}{OC}$=$\frac{\sqrt{3}}{3}$£¬
¡à¡ÏACO=30¡ã£¬
ÔÚRt¡÷OBCÖУ¬¡ßtan¡ÏBCO=$\frac{OB}{OC}$=$\sqrt{3}$£¬
¡à¡ÏBCO=60¡ã£¬
¡à¡ÏACB=¡ÏACO+¡ÏBCO=90¡ã£¬
¡à¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
£¨2£©ÉèP£¨m£¬$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©£¬×÷ÉäÏßCN£¬Ê¹µÃ¡ÏBCN=60¡ã£¬×÷FH¡ÍCNÓÚH£¬FG¡ÍAEÓÚG£¬
ÔòFH=CF•cos30¡ã=$\frac{\sqrt{3}}{2}$CF£®
ÔòS¡÷PBC=S¡÷POC+S¡÷POB-S¡÷BOC
=$\frac{1}{2}$¡Á$\sqrt{3}$¡Ám+$\frac{1}{2}$¡Á3¡Á£¨-$\frac{\sqrt{3}}{3}$m2+$\frac{2\sqrt{3}}{3}$m+$\sqrt{3}$£©-$\frac{1}{2}$¡Á$\sqrt{3}$¡Á3
=-$\frac{\sqrt{3}}{2}$£¨m-$\frac{3}{2}$£©2+$\frac{9\sqrt{3}}{8}$£¬
¡ß-$\frac{\sqrt{3}}{2}$£¼0£¬
¡àm=$\frac{3}{2}$ʱ£¬¡÷PBCµÄÃæ»ý×î´ó£¬´ËʱP£¨$\frac{3}{2}$£¬-$\frac{5\sqrt{3}}{4}$£©£¬
¡ß¶¯µãGµÄÔ˶¯Ê±¼ä=$\frac{EF}{1}$+$\frac{CF}{\frac{2\sqrt{3}}{3}}$=EF+$\frac{\sqrt{3}}{2}$CF=EF+FH£¬
¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µ±EH¡ÍCNʱ£¬¶¯µãGµÄÔ˶¯Ê±¼ä×îС£¬
¡ß¡ÏEFB=¡ÏEBF=30¡ã£¬
¡àEF=EB=$\frac{3}{2}$£¬
ÔÚRt¡÷EFGÖУ¬FG=EF•cos30¡ã=$\frac{3\sqrt{3}}{4}$£¬EG=$\frac{3}{4}$£¬OG=$\frac{3}{4}$£¬
¡à´ËʱFµÄ×ø±êΪ£¨$\frac{3}{4}$£¬-$\frac{3\sqrt{3}}{4}$£©£®
£¨3£©ÓÉÌâÒâÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x-$\sqrt{3}$£¬Ö±ÏßACµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x+\frac{\sqrt{3}}{3}}\\{y=\frac{\sqrt{3}}{3}{x}^{2}-\frac{2\sqrt{3}}{3}x-\sqrt{3}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=4}\\{y=\frac{5\sqrt{3}}{3}}\end{array}\right.$£¬
¡àM£¨4£¬$\frac{5\sqrt{3}}{3}$£©£¬
¡ßC1£¨t£¬$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©£¬
¡àAM2=52+£¨$\frac{5\sqrt{3}}{3}$£©2£¬C1A2=£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2£¬MC1=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬
¢Ùµ±AM=MC1ʱ£¬52+£¨$\frac{5\sqrt{3}}{3}$£©2=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬½âµÃt=5+$\sqrt{22}$»ò5-$\sqrt{22}$£¬
¢Úµ±C1A=C1Mʱ£¬£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬½âµÃt=$\frac{5}{2}$
¢Ûµ±C1A=AMʱ£¬52+£¨$\frac{5\sqrt{3}}{3}$£©2=£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2£¬½âµÃt=$\sqrt{22}$s»ò-$\sqrt{22}$£¨ÉáÆú£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄtµÄֵΪ£¨5+$\sqrt{22}$£©s»ò£¨5-$\sqrt{22}$£©s»ò$\frac{5}{2}$s»ò$\sqrt{22}$s£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Èñ½ÇÈý½Çº¯Êý¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»á¹¹½¨·½³Ì½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 45 | B£® | 55 | C£® | 66 | D£® | 70 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨$\frac{22}{3}$£¬0£© | B£® | £¨$\frac{15}{2}$£¬0£© | C£® | £¨$\frac{68}{9}$£¬0£© | D£® | £¨$\frac{48}{5}$£¬0£© |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com