6£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£®

£¨1£©Åжϡ÷ABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èçͼ£¨1£©£¬µãPΪֱÏßBCÏ·½µÄ¶þ´Îº¯ÊýͼÏóÉϵÄÒ»¸ö¶¯µã£¨µãPÓëB¡¢C²»Öغϣ©£¬¹ýµãp×÷YÖáµÄƽÐÐÏß½»XÖáÓÚµãE£®µ±¡÷PBCÃæ»ýµÄ×î´óֵʱ£¬µãFΪÏ߶ÎBCÒ»µã£¨²»ÓëµãBCÖغϣ©£¬Á¬½ÓEF£¬¶¯µãG´ÓµãE³ö·¢£¬ÑØÏ߶ÎEFÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½µãF£¬ÔÙÑØFCÒÔÿÃë$\frac{2\sqrt{3}}{3}$¸öµ¥Î»µÄËÙ¶ÈÔ˶¯µ½µãCºóÍ£Ö¹£¬µ±µãFµÄ×ø±êÊǶàÉÙʱ£¬µãGÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÓÃʱ×îÉÙ£¿
£¨3£©Èçͼ2£¬½«¡÷ACOÑØÉäÏßCB·½ÏòÒÔÿÃë$\frac{2\sqrt{3}}{3}$¸öµ¥Î»µÄËÙ¶ÈƽÒÆ£¬¼ÇƽÒƺóµÄ¡÷ACO Îª¡÷A1C1O1Á¬½ÓAA1£¬Ö±ÏßAA1½»Å×ÎïÏßÓëµãM£¬ÉèƽÒƵÄʱ¼äΪtÃ룬µ±¡÷AMC1ΪµÈÑüÈý½ÇÐÎʱ£¬ÇótµÄÖµ£®

·ÖÎö £¨1£©½áÂÛ£º¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®ÔÚRt¡÷AOCÖУ¬ÓÉtan¡ÏACO=$\frac{OA}{OC}$=$\frac{\sqrt{3}}{3}$£¬ÍƳö¡ÏACO=30¡ã£¬ÔÚRt¡÷OBCÖУ¬ÓÉtan¡ÏBCO=$\frac{OB}{OC}$=$\sqrt{3}$£¬ÍƳö¡ÏBCO=60¡ã£¬¿ÉµÃ¡ÏACB=¡ÏACO+¡ÏBCO=90¡ã£»
£¨2£©ÉèP£¨m£¬$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©£¬×÷ÉäÏßCN£¬Ê¹µÃ¡ÏBCN=60¡ã£¬×÷FH¡ÍCNÓÚH£¬FG¡ÍAEÓÚG£¬ÔòFH=CF•cos30¡ã=$\frac{\sqrt{3}}{2}$CF£¬Ê×ÏÈÇó³öµãP×ø±ê£¬¶¯µãGµÄÔ˶¯Ê±¼ä=$\frac{EF}{1}$+$\frac{CF}{\frac{2\sqrt{3}}{3}}$=EF+$\frac{\sqrt{3}}{2}$CF=EF+FH£¬¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µ±EH¡ÍCNʱ£¬¶¯µãGµÄÔ˶¯Ê±¼ä×îС£¬Óɴ˼´¿É½â¾öÎÊÌ⣻
£¨3£©Çó³öÖ±ÏßAMµÄ½âÎöʽ£¬ÀûÓ÷½³Ì×éÇó³öµãM×ø±ê£¬ÓÉÌâÒâC¡ä£¨t£¬$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©£¬·ÖÈýÖÖÇéÐÎÌÖÂÛ£¬Ïë°ì·¨Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣻

½â´ð ½â£º£¨1£©½áÂÛ£º¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®
ÀíÓÉ£ºÈçͼ1ÖУ¬Á¬½ÓAC£®
¡ßÅ×ÎïÏßy=$\frac{\sqrt{3}}{3}$x2-$\frac{2\sqrt{3}}{3}$x-$\sqrt{3}$ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬-$\sqrt{3}$£©£¬
ÔÚRt¡÷AOCÖУ¬¡ßtan¡ÏACO=$\frac{OA}{OC}$=$\frac{\sqrt{3}}{3}$£¬
¡à¡ÏACO=30¡ã£¬
ÔÚRt¡÷OBCÖУ¬¡ßtan¡ÏBCO=$\frac{OB}{OC}$=$\sqrt{3}$£¬
¡à¡ÏBCO=60¡ã£¬
¡à¡ÏACB=¡ÏACO+¡ÏBCO=90¡ã£¬
¡à¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ®

£¨2£©ÉèP£¨m£¬$\frac{\sqrt{3}}{3}$m2-$\frac{2\sqrt{3}}{3}$m-$\sqrt{3}$£©£¬×÷ÉäÏßCN£¬Ê¹µÃ¡ÏBCN=60¡ã£¬×÷FH¡ÍCNÓÚH£¬FG¡ÍAEÓÚG£¬
ÔòFH=CF•cos30¡ã=$\frac{\sqrt{3}}{2}$CF£®
ÔòS¡÷PBC=S¡÷POC+S¡÷POB-S¡÷BOC
=$\frac{1}{2}$¡Á$\sqrt{3}$¡Ám+$\frac{1}{2}$¡Á3¡Á£¨-$\frac{\sqrt{3}}{3}$m2+$\frac{2\sqrt{3}}{3}$m+$\sqrt{3}$£©-$\frac{1}{2}$¡Á$\sqrt{3}$¡Á3
=-$\frac{\sqrt{3}}{2}$£¨m-$\frac{3}{2}$£©2+$\frac{9\sqrt{3}}{8}$£¬
¡ß-$\frac{\sqrt{3}}{2}$£¼0£¬
¡àm=$\frac{3}{2}$ʱ£¬¡÷PBCµÄÃæ»ý×î´ó£¬´ËʱP£¨$\frac{3}{2}$£¬-$\frac{5\sqrt{3}}{4}$£©£¬
¡ß¶¯µãGµÄÔ˶¯Ê±¼ä=$\frac{EF}{1}$+$\frac{CF}{\frac{2\sqrt{3}}{3}}$=EF+$\frac{\sqrt{3}}{2}$CF=EF+FH£¬
¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µ±EH¡ÍCNʱ£¬¶¯µãGµÄÔ˶¯Ê±¼ä×îС£¬
¡ß¡ÏEFB=¡ÏEBF=30¡ã£¬
¡àEF=EB=$\frac{3}{2}$£¬
ÔÚRt¡÷EFGÖУ¬FG=EF•cos30¡ã=$\frac{3\sqrt{3}}{4}$£¬EG=$\frac{3}{4}$£¬OG=$\frac{3}{4}$£¬
¡à´ËʱFµÄ×ø±êΪ£¨$\frac{3}{4}$£¬-$\frac{3\sqrt{3}}{4}$£©£®

£¨3£©ÓÉÌâÒâÖ±ÏßBCµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x-$\sqrt{3}$£¬Ö±ÏßACµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}$x+$\frac{\sqrt{3}}{3}$£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{\sqrt{3}}{3}x+\frac{\sqrt{3}}{3}}\\{y=\frac{\sqrt{3}}{3}{x}^{2}-\frac{2\sqrt{3}}{3}x-\sqrt{3}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=4}\\{y=\frac{5\sqrt{3}}{3}}\end{array}\right.$£¬
¡àM£¨4£¬$\frac{5\sqrt{3}}{3}$£©£¬
¡ßC1£¨t£¬$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©£¬
¡àAM2=52+£¨$\frac{5\sqrt{3}}{3}$£©2£¬C1A2=£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2£¬MC1=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬
¢Ùµ±AM=MC1ʱ£¬52+£¨$\frac{5\sqrt{3}}{3}$£©2=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬½âµÃt=5+$\sqrt{22}$»ò5-$\sqrt{22}$£¬
¢Úµ±C1A=C1Mʱ£¬£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2=£¨4-t£©2+£¨$\frac{5\sqrt{3}}{3}$-$\frac{\sqrt{3}}{3}$t+$\sqrt{3}$£©2£¬½âµÃt=$\frac{5}{2}$
¢Ûµ±C1A=AMʱ£¬52+£¨$\frac{5\sqrt{3}}{3}$£©2=£¨t+1£©2+£¨$\frac{\sqrt{3}}{3}$t-$\sqrt{3}$£©2£¬½âµÃt=$\sqrt{22}$s»ò-$\sqrt{22}$£¨ÉáÆú£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄtµÄֵΪ£¨5+$\sqrt{22}$£©s»ò£¨5-$\sqrt{22}$£©s»ò$\frac{5}{2}$s»ò$\sqrt{22}$s£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Èñ½ÇÈý½Çº¯Êý¡¢Ò»´Îº¯ÊýµÄÐÔÖÊ¡¢µÈÑüÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»á¹¹½¨·½³Ì½â¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¼ÆËã$\sqrt{121¡Á36}$µÈÓÚ£¨¡¡¡¡£©
A£®45B£®55C£®66D£®70

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚRt¡÷ABCÖУ¬aΪֱ½Ç±ß£¬cΪб±ß£¬ÇÒÂú×ã$\sqrt{c-5}$+2$\sqrt{10-2c}$=a-4£¬ÇóÕâ¸öÈý½ÇÐεÄÖܳ¤ºÍÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬ÕýÁù±ßÐÎABCDEFµÄ±ß³¤Îª6cm£¬PÊǶԽÇÏßBEÉÏÒ»¶¯µã£¬¹ýµãP×÷Ö±ÏßlÓëBE´¹Ö±£¬¶¯µãP´ÓBµã³ö·¢ÇÒÒÔ1cm/sµÄËÙ¶ÈÔÈËÙƽÒÆÖÁEµã£®ÉèÖ±Ïßlɨ¹ýÕýÁù±ßÐÎABCDEFÇøÓòµÄÃæ»ýΪS£¨cm2£©£¬µãPµÄÔ˶¯Ê±¼äΪt£¨s£©£¬ÏÂÁÐÄÜ·´Ó³SÓëtÖ®¼äº¯Êý¹ØϵµÄ´óÖÂͼÏóÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³ÖÐѧΪÁ˽â¾ÅÄ꼶ѧÉúÌåÄÜ×´¿ö£¬´Ó¾ÅÄ꼶ѧÉúÖÐËæ»ú³éÈ¡²¿·ÖѧÉú½øÐÐÌåÄܲâÊÔ£¬²âÊÔ½á¹û·ÖΪA£¬B£¬C£¬DËĸöµÈ¼¶£¬²¢ÒÀ¾Ý²âÊԳɼ¨»æÖÆÁËÈçÏÂÁ½·ùÉв»ÍêÕûµÄͳ¼Æͼ£»
£¨1£©Õâ´Î³éÈ¡µÄѧÉúµÄÈËÊýÊÇ50£»
£¨2£©²¹È«ÌõÐÎͳ¼Æͼ£»
£¨3£©ÔÚÉÈÐÎͳ¼ÆͼÖÐCµÈ¼¶Ëù¶ÔÓ¦µÄÔ²ÐĽÇΪ72¶È£»
£¨4£©¸ÃУ¾ÅÄ꼶ѧÉúÓÐ1500ÈË£¬ÇëÄã¹À¼ÆÆäÖÐAµÈ¼¶µÄѧÉúÈËÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãA£¨2£¬m£©ÊǵÚÒ»ÏóÏÞÄÚÒ»µã£¬Á¬½ÓOA£¬½«OAÈƵãAÄæʱÕëÐýת90¡ãµÃµ½Ï߶ÎAB£¬Èô·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©µÄͼÏóÇ¡ºÃͬʱ¾­¹ýµãA¡¢B£¬ÔòkµÄֵΪ2+2$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Å×ÎïÏßL£ºy=a£¨x-x1£©£¨x-x2£©£¨³£Êýa¡Ù0£©ÓëxÖá½»ÓÚµãA£¨x1£¬0£©£¬B£¨x2£¬0£©£¬ÓëyÖá½»ÓÚµãC£¬ÇÒx1•x2£¼0£¬AB=4£¬µ±Ö±Ïßl£ºy=-3x+t+2£¨³£Êýt£¾0£©Í¬Ê±¾­¹ýµãA£¬Cʱ£¬t=1£®
£¨1£©µãCµÄ×ø±êÊÇ£¨0£¬3£©£»
£¨2£©ÇóµãA£¬BµÄ×ø±ê¼°LµÄ¶¥µã×ø±ê£»
£¨3£©ÔÚÈçͼ2 ËùʾµÄƽÃæÖ±½Ç×ø±êϵÖУ¬»­³öLµÄ´óÖÂͼÏó£»
£¨4£©½«LÏòÓÒƽÒÆt¸öµ¥Î»³¤¶È£¬Æ½ÒƺóyËæxµÄÔö´ó¶øÔö´ó²¿·ÖµÄͼÏó¼ÇΪG£¬ÈôÖ±ÏßlÓëGÓй«¹²µã£¬Ö±½Óд³ötµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬¾ØÐÎOABCµÄ¶¥µãA¡¢BÔÚË«ÇúÏßy=$\frac{k}{x}$£¨ x£¾0£©ÉÏ£¬BCÓëxÖá½»ÓÚµãD£®ÈôµãAµÄ×ø±êΪ£¨2£¬4£©£¬ÔòµãDµÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨$\frac{22}{3}$£¬0£©B£®£¨$\frac{15}{2}$£¬0£©C£®£¨$\frac{68}{9}$£¬0£©D£®£¨$\frac{48}{5}$£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸