精英家教网 > 初中数学 > 题目详情
如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使FB=BD,连接AF.
(1)证明:△BDE∽△FDA;
(2)试判断直线AF与⊙O的位置关系,并给出证明.

【答案】分析:(1)因为∠BDE公共,夹此角的两边BD:DF=ED:AD=2:3,由相似三角形的判定,可知△BDE∽△FDA.
(2)连接OA、OB、OC,证明△OAB≌△OAC,得出AO⊥BC.再由△BDE∽△FDA,得出∠EBD=∠AFD,则BE∥FA,从而AO⊥FA,得出直线AF与⊙O相切.
解答:证明:(1)在△BDE和△FDA中,
∵FB=BD,AE=ED,AD=AE+ED,FD=FB+BD
,(3分)
又∵∠BDE=∠FDA,
∴△BDE∽△FDA.(5分)

(2)直线AF与⊙O相切.(6分)
证明:连接OA,OB,OC,
∵AB=AC,BO=CO,OA=OA,(7分)
∴△OAB≌△OAC,
∴∠OAB=∠OAC,
∴AO是等腰三角形ABC顶角∠BAC的平分线,
=
∴AO⊥BC,
∵△BDE∽△FDA,得∠EBD=∠AFD,
∴BE∥FA,
∵AO⊥BE知,AO⊥FA,
∴直线AF与⊙O相切.
点评:本题考查相似三角形的判定和切线的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点A、B在数轴上,它们所对应的数分别是-4、
2x+23x-1
,且点A、B关于原点O对称,求x的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A为⊙O直径CB延长线上一点,过点A作⊙O的切线AD,切点为D,过点D作DE⊥AC,垂足为F,连接精英家教网BE、CD、CE,已知∠BED=30°.
(1)求tanA的值;
(2)若AB=2,试求CE的长.
(3)在(2)的条件下,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点A的坐标为(2
2
,0
),点B在直线y=-x上运动,当线段AB最短时,点B的坐标为(  )
A、(0,0)
B、(
2
2
,-
2
2
)
C、(1,1)
D、(
2
,-
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B在线段MN上,则图中共有
 
条线段.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,点O到直线l的距离为3,如果以点O为圆心的圆上只有两点到直线l的距离为1,则该圆的半径r的取值范围是
2<r<4

查看答案和解析>>

同步练习册答案