精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,RtABC的三个顶点分别是A(-4,2)、B(0,4)、C(0,2),

(1)画出ABC关于点C成中心对称的A1B1C;平移ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的A2B2C2

(2)A1B1C和A2B2C2关于某一点成中心对称,则对称中心的坐标为

【答案】1作图见解析;()2)(2,-1)

【解析】

试题分析:(1)根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;

(2)根据中心对称的性质,连接两组对应点的交点即为对称中心.

试题解析:(1)A1B1C如图所示,A2B2C2如图所示;

(2)如图,对称中心为(2,-1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,BAC=90°AB=AC=3DBC边的中点,MDN=90°,将MDN绕点D顺时针旋转,它的两边分别交ABAC于点EF

   

1)求证:ADE ≌ △CDF

2)求四边形AEDF的面积;

3)如图2,连接EF,设BE=x,求DEF的面积Sx之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).

(1)求抛物线的解析式;

(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;

(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举办了“创建文明城市知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9

1)求足球和篮球的单价各是多少元?

2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1590元,学校最多可以购买多少个足球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题9把代数式通过配凑等手段得到完全平方式再运用完全平方式是非负性这一性质增加问题的条件这种解题方法叫做配方法配方法在代数式求值解方程最值问题等都有着广泛的应用

例如:用配方法因式分解:a2+6a+8

原式=a2+6a+9-1

=a+32 –1

=a+3-1)(a+3+1

=a+2)(a+4

M=a2-2ab+2b2-2b+2利用配方法求M的最小值

a2-2ab+2b2-2b+2=a2-2ab+b2+b2-2b+1+1

=a-b2+b-12 +1

a-b20,(b-12 0

当a=b=1时M有最小值1

请根据上述材料解决下列问题:

1在横线上添上一个常数项使之成为完全平方式:a 2+4a+

2用配方法因式分解 a2-24a+143

3M=a2+2a +1M的最小值

4已知a2+b2+c2-ab-3b-4c+7=0a+b+c的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

1)求甲、乙两种型号的机器人每台的价格各是多少万元;

2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分为非常赞同、赞同、无所谓、不赞同等四种态度.现将调查统计结果制成了如图所示的两幅统计图,请结合这两幅统计图,回答下列问题:

1)在这次问卷调查中,一共抽取了 名学生,a %

2)请补全条形统计图;

3)持不赞同态度的学生人数的百分比所占扇形的圆心角为 °

4)若该校有1200名学生,请你估计该校学生对父母生育二孩持赞同非常赞同两种态度的人数之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+cx轴正半轴交于点A30),与y轴交于点B03),点Px轴上一动点,过点Px轴的垂线交抛物线于点C,交直线AB于点D,设Px0).

1)求抛物线的函数表达式;

2)当0x3时,求线段CD的最大值;

3)在△PDB△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;

4)过点BCP的外接圆恰好经过点A时,x的值为   .(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,把二元一次方程的一个解用一个点表示出来,例如:可以把它的其中一个解用点(21 )在平面直角坐标系中表示出来

探究1:

(1)请你在直角坐标系中标出4个以方程的解为坐标的点,然后过这些点中的任意两点作直线,你有什么发现,请写出你的发现 .

在这条直线上任取一点,这个点的坐标是方程的解吗? (不是”___

(2)以方程的解为坐标的点的全体叫做方程的图象.根据上面的探究想一想:方程的图象是_ _.

探究2:根据上述探究结论,在同-平面直角坐标系中画出二元一次方程组中的两个二元一次方程的图象,由这两个二元一次方程的图象,请你直接写出二元一次方程组的解,即

查看答案和解析>>

同步练习册答案