分析 首先过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于2π,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.
解答 解:∵⊙O的面积为2π,
∴⊙O的半径为1,
过点O作OH⊥AB于点H,连接OA,OB,
∴AH=$\frac{1}{2}$AB,
∵∠AOB=$\frac{1}{6}$×360°=60°,OA=OB,
∴△OAB是等边三角形,
∴AB=OA=1cm,
∴AH=$\frac{1}{2}$cm,
∴OH=$\frac{\sqrt{3}}{2}$,
∴∴S正六边形ABCDEF=6S△OAB=6×$\frac{1}{2}$×1×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$.
点评 本题考查的是正多边形和圆,熟知正六边形的半径与边长相等是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com