精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-kx+k-5.
(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;
(2)若此二次函数图象的对称轴为x=1,求它的解析式;
(3)若(2)中的二次函数的图象与x轴交于A、B,与y轴交于点C;D是第四象限函数图象上的点,且OD⊥BC于H,求点D的坐标.
【答案】分析:(1)根据二次函数与二次方程的对应关系,可判断出二次方程x2-kx+k-5=0有两个不同的根,易得此二次函数的图象与x轴都有两个交点;
(2)根据对称轴的方程易得k的值,将k的值代入可得解析式;
(3)根据解析式,易得ABC的坐标,进而可得BC的斜率,根据垂直的判定方法,可得OD的斜率,解可得x的值,即可得D的坐标.
解答:(1)证明:对于二次方程:x2-kx+k-5=0,
有△=(-k)2-4k+20=k2-4k+4+16=(k-2)2+16>0;
可得其必有两个不相等的根;
故无论k取何实数,此二次函数的图象与x轴都有两个交点.

(2)解:若此二次函数图象的对称轴为x=1,
则对称轴的方程为-(-k)=1,k=2;
易得它的解析式为y=x2-2x-3.

(3)解:若函数解析式为y=x2-2x-3;
易得其与x轴的交点坐标为A(-1,0)B(3,0);
与y轴的交点C的坐标为(0,-3);
BC的解析式为:y=x-3;
设D的坐标为(x,x2-2x-3),由OD⊥BC,图象过(0,0),则OD的解析式为:y=-x,
易得x2-2x-3=-x;
故x=
解可得D的坐标为(,-
点评:本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知二次函数y=x2+mx+m-5,
(1)求证:不论m取何值时,抛物线总与x轴有两个交点;
(2)求当m取何值时,抛物线与x轴两交点之间的距离最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=x2+(2a+1)x+a2-1的最小值为0,则a的值是(  )
A、
3
4
B、-
3
4
C、
5
4
D、-
5
4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为(  )
A、x1=1,x2=3B、x1=0,x2=3C、x1=-1,x2=1D、x1=-1,x2=3

查看答案和解析>>

科目:初中数学 来源: 题型:

8、已知二次函数y1=x2-x-2和一次函数y2=x+1的两个交点分别为A(-1,0),B(3,4),当y1>y2时,自变量x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)试求二次函数的解析式;
(2)求y的最大值;
(3)写出当y>0时,x的取值范围.

查看答案和解析>>

同步练习册答案