精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣ ),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).

(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

【答案】
(1)

解:由题意,设抛物线的解析式为y=a(x﹣4)2 (a≠0)

∵抛物线经过(0,2)

∴a(0﹣4)2 =2

解得:a=

∴y= (x﹣4)2

即:y= x2 x+2

当y=0时, x2 x+2=0

解得:x=2或x=6

∴A(2,0),B(6,0)


(2)

解:存在,

如图2,由(1)知:抛物线的对称轴l为x=4,

因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小

∵B(6,0),C(0,2)

∴OB=6,OC=2

∴BC=2

∴AP+CP=BC=2

∴AP+CP的最小值为2


(3)

解:如图3,连接ME

∵CE是⊙M的切线

∴ME⊥CE,∠CEM=90°

∵C的坐标(0,2),

∴OC=2,

∵AB=4,

∴ME=2

∴OC=ME=2,

∵∠ODC=∠MDE,

∵在△COD与△MED中

∴△COD≌△MED(AAS),

∴OD=DE,DC=DM

设OD=x

则CD=DM=OM﹣OD=4﹣x

则Rt△COD中,OD2+OC2=CD2

∴x2+22=(4﹣x)2

∴x=

∴D( ,0)

设直线CE的解析式为y=kx+b(k≠0),

∵直线CE过C(0,2),D( ,0)两点,

解得:

∴直线CE的解析式为y=﹣ +2;


【解析】(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点C,P均在⊙O上,且分布在直径AB的两侧,BE⊥CP于点E.

(1)求证:△CAB∽△EPB;
(2)若AB=10,AC=6,BP=5,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有(
A.3个
B.2个
C.1个
D.0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,过对角线BD上一点P,作EFBC,HGAB,若四边形AEPH和四边形CFPG的面积分另为S1和S2,则S1与S2的大小关系为(  )

AS1=S2 BS1>S2 CS1<S2 D不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】农夫将苹果树种在正方形的果园内,为了保护苹果树不受风吹,他在苹果树的周围种上针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n(  )

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将数11,2,3,…,n(n为正整数)顺次排成一列:1,,…,,…,a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,则S2018=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38, ≈1.73,精确到个位)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全面两孩政策实施后,甲,乙两个家庭有各自的规划.假定生男生女的概率相,回答下列问题

(1家庭已有一个男孩,准备生一个孩子,第二个孩子是女孩的率是

(2)乙家庭没有孩子准备生两个孩子求至少有一个孩子是女孩的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是(3,0),tan∠OAC=3;

(1)求该抛物线的函数表达式;
(2)点P在x轴上方的抛物线上,且∠PAB=∠CAB,求点P的坐标;
(3)若平行于x轴的直线与抛物线交于点M、N(M点在N点左侧),
①若以MN为直径的圆与x轴相切,求该圆的半径;
②若Q(m,4)是直线MN上一动点,当以点C、B、Q为顶点的三角形的面积等于6时,请直接写出符合条件的m值,为

查看答案和解析>>

同步练习册答案