精英家教网 > 初中数学 > 题目详情
7、如图,点B、C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是
2a-b

分析:由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.
解答:解:∵MN=MB+CN+BC=a,BC=b,
∴MB+CN=a-b,
∵M是AB的中点,N是CD中点,
∴AB+CD=2(MB+CN)=2(a-b),
∴AD=2(a-b)+b=2a-b,
故答案为:2a-b.
点评:本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,点C、D在线段AB上,△PCD是等边三角形.
(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;
(2)当△ACP∽△PDB时,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,点D,E分别在线段AB,AC上,BE,CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要写一个条件).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是
∠B=∠C(答案不唯一)
∠B=∠C(答案不唯一)
(只写一个条件即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C,D在线段AB上,AC=
1
3
AB,CD=
1
2
CB,若AB=3,则图中所有线段长的和是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点C、D在线段AB上,AC=
13
BC
,D是BC的中点,CD=4.5,求线段AB的长.

查看答案和解析>>

同步练习册答案