【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥ x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ ABC的内部(不包括△ ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△ BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写过程).
【答案】(1)二次函数的解析式为y=﹣x2+2x+4,点M的坐标为(1,5);
(2)m的取值范围为2<m<4;
(3)点P的坐标为你P1(),P2(),P3(3,1),P4(﹣3,7).
【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法即可得到点M的坐标;
(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;
(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标
试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,
解得
∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,
∴点M的坐标为(1,5);
(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,
解得
∴直线AC的解析式为y=﹣x+4,
如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F
把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)
∴1<5﹣m<3,解得2<m<4;
(3)所有符合题意得点P坐标有4个,分别为P1( ),P2( , ,P3(3,1),P4(﹣3,7).
附解答过程,不必写过程。
连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)
∵MG=1,GC=5﹣4=1
∴MC= = = ,
把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),
∵NG=GC,GM=GC,
∴∠NCG=∠GCM=45°,
∴∠NCM=90°,
由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点
①若有△PCM∽△BDC,则有
∵BD=1,CD=3,
∴CP= = = ,
∵CD=DA=3,
∴∠DCA=45°,
若点P在y轴右侧,作PH⊥y轴,
∵∠PCH=45°,CP=
∴PH= =
把x= 代入y=﹣x+4,解得y= ,
∴P1( );
同理可得,若点P在y轴左侧,则把x=﹣ 代入y=﹣x+4,解得y=
∴P2( , );
②若有△PCM∽△CDB,则有
∴CP= =3
∴PH=3 ÷ =3,
若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;
若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7
∴P3(3,1);P4(﹣3,7).
∴所有符合题意得点P坐标有4个,分别为P1( ),P2( , ,P3(3,1),P4(﹣3,7).
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,
将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
A. (, ) B. (, ) C. (-, ) D. (, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】能判定四边形是平行四边形的条件是( )
A.一组对边平行,另一组对边相等
B.一组对边相等,一组邻角相等
C.一组对边平行,一组邻角相等
D.一组对边平行,一组对角相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列长度的三根小木棒能构成三角形的是( )
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com