精英家教网 > 初中数学 > 题目详情
如图,有A、B、C三种不同型号的卡片,每种卡片各有k张.其中A型卡片是边长为a的正方形,B型卡片是长为b、宽为a的长方形,C型卡片是边长为b的正方形.从其中取若干张卡片,每种卡片至少取一张,把取出的这些卡片拼成一个正方形(所拼的图中既不能有缝隙,也不能有重合部分).
尝试操作:若k=10,请选取适当的卡片拼成一个边长为(2a+b)的正方形,画出示意图.
思考解释:若k=20,
①共取出50张卡片,取出的这些卡片能否拼成一个正方形?请简要说明理由;
②可以拼成______种不同的正方形.
拓展应用:上述A、B、C型的卡片各若干张(足够多),已知:a=2b,现共取出2500张卡片,拼成一个正方形,求可以拼成的正方形中面积最大值.(用含a的代数式表示).
尝试操作:如图

思考解释:
①假设存在这样的正方形,不妨设这个正方形的边长为(xa+yb),则这个正方形的面积为(xa+yb)2=x2a2+2xyab+y2b2
即此时需要x2张A卡片,2xy张B卡片,y2张C卡片,因此总共需要(x2+2xy+y2)张卡片,即(x+y)2张卡片.那么根据题意,(x+y)2=50,因此不存在这样的x、y满足题意,因此不能从其中取出50张卡片拼成正方形.
②13;
对本题给出方法如下:
法一:枚举法如(a+2b)2、(a+3b)2
法二:由①知,令m=(x+y)2=x2+2xy+y2,则m为一个完全平方数,且满足
4≤m≤60
x2≤20
2xy≤20
y2≤20

1°m=4时,x+y=2,
x=1
y=1
1种;
2°m=9时,x+y=3,
x=1
y=2
x=2
y=1
2种;
3°m=16时,x+y=4,
x=1
y=3
x=2
y=2
x=3
y=1
3种;
4°m=25时,x+y=5,
x=1
y=4
x=2
y=3
x=3
y=2
x=4
y=1
4种;

5°m=36时,x+y=6,
x=2
y=4
x=3
y=3
x=4
y=2
3种;
6°m=49时,x+y=7,
0种
共13种.
拓展应用:
(x+y)2=2500,x+y=50,y=50-x,
边长为:xa+yb=xa+
a
2
(50-x)=(25+
x
2
)a,
25+
x
2
随x增大而增大,所以当x=49时最大.
最大面积为:(49a+b)2=(99b)2=(
99a
2
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)(2m-3)(2m+5)
(2)20052-2006×2004
(3)4(x+1)2-( 2x+5)(2x-5)
(4)(a+b)(a-b)(a2+b2
(5)(8xy2-6x2y+4xy)÷(-2x)
(6)(a+b-c)(a+b+c)
(7)20012
(8)(x+2y-3)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

给定整数n≥3,实数a1,a2,…,an满足min1≤i<j≤n|ai-aj|=1.求
n
k=1
|ak|3
的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)化简求值:5(m+n)(m-n)-2(m+n)2-3(m-n)2,其中m=-2,n=
1
5

(2)若已知(a+b)2=11,(a-b)2=5,求:a2+b2的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

计算:
(1)(-
3
)2+4×(-
1
2
)-23+273

(2)a•(-a)3÷(-a)4
(3)(x+1)5÷(x+1)3-x(x-2)
(4)(28a3b2c+a2b3-14a2b2)÷(-7a2b)
(5)(2a+3b)(-2a+3b)
(6)简便计算:2014×2008.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先化简,再求值:2(x-3)(x-2)-(x+3)2-(x+1)(x-1),其中x=-
1
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

a
a+b
中的a,b都扩大到4倍,则分式的值______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

化简:a•a5+(-a)3•a3-(2a22•a2

查看答案和解析>>

同步练习册答案