精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°AC4BC3,点DAB的中点,将△ACD绕着点C逆时针旋转,使点A落在射线CB的上A′处,点D落在点D′处,

1)请依题意画出图形;

2)求D′B长为   

【答案】1)见解析;(2

【解析】

1)依题意画出图形即可;

2)根据勾股定理可得AB5,根据中点的性质可得CDADBDAB2.5,再根据勾股定理可得D′E1.5,根据A′ECE2BC3,可得BE1,再根据勾股定理即可求出D′B的值.

解:(1)如图所示:

2)∵在RtABC中,∠ACB90°AC4BC3

AB5

∵点DAB的中点,

CDADBDAB2.5

D′D′EBC

∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,

CD′ADA′D′

D′E1.5

A′ECE2BC3

BE1

BD′

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】电影公司随机收集了2000部电影的有关数据,经分类整理得到如表:

电影类型

第一类

第二类

第三类

第四类

第五类

第六类

电影部数

140

50

300

200

800

510

好评率

注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.

如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是______

电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,可使改变投资策略后总的好评率达到最大?

答:______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,OC⊙O的半径,点D是半圆AB上一动点(不与AB重合),连结DC交直径AB与点E,∠AOC=60°,则∠AED的范围为(

A.0°< ∠AED <180°B.30°< ∠AED <120°

C.60°< ∠AED <120°D.60°< ∠AED <150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线与双曲线x>0)交于点

1)求ak的值;

2)已知直线过点且平行于直线,点Pmn)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线x>0)于点,双曲线在点MN之间的部分与线段PMPN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.

①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,经过点A的双曲线y=(x0)同时经过点B,且点A在点B的左侧,点A的横坐标为AOB=OBA=45°,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于 x 的方程 2x2+kx﹣1=0.

(1)求证:方程有两个不相等的实数根;

(2)若方程的一个根是﹣1,求另一个根及 k 值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°BC4BA5,点D是边AC上的一动点,过点DDEAB交边BC于点E,过点BBFBCDE的延长线于点F,分别以DEEF为对角线画矩形CDGE和矩形HEBF,则在DAC的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,AD的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种新商品每件进价是120在试销期间发现当每件商品售价为130元时每天可销售70当每件商品售价高于130元时每涨价1日销售量就减少1.据此规律请回答:

(1)当每件商品售价定为170元时每天可销售多少件商品?商场获得的日盈利是多少?

(2)在上述条件不变商品销售正常的情况下每件商品的销售价定为多少元时商场日盈利可达到1600?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

①经过三个点一定可以作圆;②若等腰三角形的两边长分别为37,则第三边长是37;③一个正六边形的内角和是其外角和的2倍;④随意翻到一本书的某页,页码是偶数是随机事件;⑤关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根.

A.①②③B.①④⑤C.②③④D.③④⑤

查看答案和解析>>

同步练习册答案